データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

データ・アナリティクス入門

視点を変える学びの切り口

データ収集の視点は? これまで、自身の仮説を実証するためにデータ収集に終始していたことを痛感しました。仮説以外の視点でどのようにデータを集めるべきかが分かっていなかったため、今回「仮説を考えるためのフレームワーク」を学び、今後のデータ分析に活用できると感じました。また、ある仮説に対して別の仮説が成立する可能性への反論を防ぐため、複数の仮説を異なる切り口で立てることの重要性を再認識しました。たとえば、■3C(Customer=市場・顧客、Competitor=競合、Company=自社)や、■4P(Product=製品、Price=価格、Place=場所、Promotion=プロモーション)を利用する考え方は、データ収集の際に既存データのみならず、新たなアンケートやインタビューを通じた情報獲得にも役立ち、説得力のあるデータを生み出すための行動力が養われたと感じています。 社内参加の課題は? また、社内で実施している任意参加のセミナーや施策について、毎回参加する社員と全く参加しない社員の二極化が進んでいる現状を踏まえ、より多くの社員の参加を促すために、3Cや4Pの視点で検討を行いたいと考えています。具体的には、■3Cでは、Customer(市場・顧客)として社員、Competitor(競合)として同時開催予定のイベントの有無、Company(自社)として社員のニーズが満たされているかを検討し、■4Pでは、Product(コンテンツが社員のニーズを満たすか)、Price(参加に見合う価値があるか)、Place(開催方法が参加しやすいか)、Promotion(社内への情報周知が十分か)といった観点で施策の企画を進めます。 意見共有はどう? まずは、今回の学びを一緒に企画・運営するメンバーと共有した上でディスカッションの場を設け、これまでの検証に不足していた視点やデータを補完します。特に、本社以外の全国の拠点の社員にとっては日々のコミュニケーションが行き届いていないため、インタビューなどを通じて意見を聴く機会を設け、次年度に向けた施策の改善に努めたいと思います。

アカウンティング入門

収益とコストの秘密戦略

立地と利益の違いは? 同じ飲食業でも、立地や客層、提供する価値によって利益の出し方が大きく異なることが印象に残りました。売上を伸ばすための工夫だけでなく、どこでコストを抑えるかという視点も収益には欠かせない要素です。また、ビジネスモデルごとの収益構造を理解することで、事業の強みや改善点が明確になると学びました。 収益改善の方法は? 今回の学びは、業務における新規プロジェクトの提案時に活用したいと考えています。特に、収益構造とコスト意識を持って企画を立てることの重要性を強く実感しました。例えば、新たなサービスや業務改善の企画を提案する際には、類似ビジネスの収益構造を調査・比較し、「利益の出し方」や「コスト抑制策」を明確に示すことが必要だと感じました。単なるアイデアで終わらせず、採算が取れる仕組みとして説明することが今後のポイントです。 実践の工夫は何? 具体的な行動としては、新聞や記事を通じて他業種のビジネスモデルを日常的に観察し、自社の損益構造に意識を向けながら業務に取り組むことが挙げられます。また、新しい企画を考える際に収益モデルとコスト構造をセットで検討する習慣をつけることで、ビジネスの仕組み全体を意識し、より実現性の高い提案や判断につながると考えています。 低利益の理由は? 一方で、学習の中で疑問に感じたのは、売上総利益率が低くても利益を生み出せるビジネスが存在する点です。原価率が高い業態でも成り立つモデルがあることに驚かされ、その裏にあるコスト構造や工夫をもっと深掘りしたいと感じました。SIerとしてITシステムを提供する業務に携わる中で、飲食業のように「モノを売る」モデルとの違いにも大きな関心があります。特に、人的リソース中心のサービス業における利益構造や、無形サービスの原価の捉え方について、他の受講生と意見交換できればと思います。 利益差の理由は? グループワークでは、「同じ売上でも利益に差が出るのはなぜか」というテーマで、業種を超えて収益構造を比較・議論できると、さらに学びが深まるのではないかと期待しています。

戦略思考入門

経済性で実感する現場の知恵

固定費削減の秘訣は? 固定費削減の方策として、規模の経済性、習熟効果、範囲の経済性という三つの概念を学びました。それぞれの考え方が、企業活動の異なる側面においてコスト低減に寄与する点が印象的でした。 規模の経済性をどう考える? まず、規模の経済性は、特定の製品における固定費の削減に有効ですが、メーカーの場合は生産設備の稼働率にも注意が必要です。例えば、汎用品のように大量生産が求められる製品に適している一方、当社では少量生産で高機能な材料の開発を目指しているため、その効果はある程度に留まると考えています。 習熟効果はどう活かす? 次に、習熟効果については、生産量が増えるにつれて単位当たりのコストが下がるという現象を指します。私が関わっている化学メーカーでは、生産期間が延びることで生産技術が向上し、結果としてコスト改善につながっていると感じました。ただし、市場環境の変化、たとえば競合他社の参入や市場縮小に伴う価格競争となった場合、習熟効果による製造費用の低減が必ずしも利益に直結しない可能性もあると考えます。 範囲経済の活用はどう? また、範囲の経済性は、会社が保有する情報、顧客、技術などの資源を他事業でも活用することで、単独で行う場合よりも効率的にコストを削減できる効果です。当社では、各部署間での情報共有や人材の配置転換が進められており、個々のスキルや経験を新たな部署で活かすという点で、この理論が実践されていると感じました。しかし、一部では新たな考え方を柔軟に受け入れる一方で、個人の意見に固執する傾向もあるため、部署間の連携強化にさらなる工夫が求められているように思います。 未来戦略は何が必要? 今後は、同じ分野で新規事業を検討している他部署との情報交換を積極的に行い、範囲の経済性をより一層効果的に活用することが重要だと考えています。また、規模の経済性と習熟効果に基づいた戦略は、開発した製品の価格設定にも反映させるべきで、短期的な視点に偏らず、中長期的な販売量や価格の動向を予測した上で、適切な価格決定を行うことが大切だと感じました。

デザイン思考入門

多様な視点で新発見のヒント

方向性はどう決める? 現場の課題改善のため、日々ブレインストーミングを実施しているものの、方向性が定まらず意見が偏ったり、アイデアがなかなか出にくい状況に陥ることがありました。そこで、今回、SCAMPER法をはじめ、シナリオ法やペーパープロトタイピングを用いて、カスタマージャーニーマップを想定しながらアイデアを考える手法を学びました。単に感覚任せでアイデアを募るのではなく、明確な視点を示しながら進めることで、より多様で有効なアイデアを導き出せることを実感しました。 実践はどう活かす? 実践演習では、まずSCAMPER法により概念的・多角的な視点からアイデアを出し、その後、技術的な実現可能性に着目したアイデア出し、最後に実現方法に焦点を当てたアイデア出しという流れで進めました。SCAMPER法は、直接的なアイデアが引き出しにくい場合でも、さまざまな視点を提供することで、思わぬアイデアを引き出すきっかけになると学びました。また、この方法により、メンバー間のバイアスによる意見の偏りも低減できる点が大きな収穫でした。 実現法はどう見える? 技術面で「どのように実現できるか」を考える過程では、SCAMPER法だけでは出なかった具体的なアイデアが登場し、視点の転換がアイデアの幅を広げる効果を実感しました。この視点の変化が、より実現性のあるアイデアを導く鍵であると感じました。 他部門との協力は? さらに、実現方法の検討段階では、他部門や他社との協力を視野に入れることで、課題を再確認し、より適切なアプローチが可能になると学びました。これにより、議論の幅が広がり、現状の課題に対して新たな解決策を見出す手法として非常に有意義であると感じました。 製品開発の秘訣は? また、製品コンセプトを考える際には、バリュープロポジションの明確化が不可欠であると再認識しました。万人にウケるものづくりは難しいかもしれませんが、企業の理念を大切にし、ターゲットを明確にすることで、より良い製品開発が実現できると学び、今後の実務に積極的に活かしていきたいと考えています。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

仮説が導いた私の成長ストーリー

仮説って何? 仮説とは、ある論点に対する仮の答え、または分かっていないことに対して一時的に立てる答えを指します。 問題解決とは? 仮説は、目的に応じて大きく①問題解決の仮説と②結論の仮説に分類されます。問題解決の仮説は、具体的な問題を解決するために「What(何が問題か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」という流れで検討します。一方、結論の仮説は、ある論点に対する仮の答えを示すもので、たとえば、あるターゲット層についての見解を一度立てた上で、別の側面(たとえば妊娠中の女性など)についても検討することが挙げられます。 フレームワークは何? また、仮説の立案には、3C(市場・顧客、競合、自社)や4P(製品、価格、場所、プロモーション)といったフレームワークが有効です。正しく仮説を用いることで、個々の仕事に対する検証マインドが高まり、説得力やビジネスのスピード、行動の制度が向上します。さらに、複数の仮説を立てて互いに網羅性を持たせることが、適切な判断へとつながります。 人事問題への対策は? 特に人事に関する課題の場合、問題解決の仮説が大いに活用できると感じました。離職率や休職率の改善、研修受講率や資格取得率の向上、また社内イベントの集客率向上といった課題に対して、「What→Where→Why→How」というプロセスは有用です。ヒトに関する課題は思い込みや特定の情報に影響されやすいため、決め打ちにせず、複数の仮説を立てることが肝心です。たとえば、現場の声を大切にしながらも、若手や中堅、管理職、経営層といったさまざまな層の意見を広く取り入れる必要があります。 組織共有の大切さは? 最後に、仮説思考の重要性をチーム内で意識させることは容易ではありません。感情に流されやすく、決め打ちで施策を決定してしまう風潮がある中、この思考プロセスをいかに周囲に広げていくかが課題です。一人だけでこのプロセスを実践しても成果は出にくいため、組織全体で共有することが求められます。

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

リーダーシップ・キャリアビジョン入門

聞く力が変える職場の未来

本音はどう引き出す? メンバーとの関係性やモチベーション向上のために必要なことが、少しずつ理解できてきたと感じます。ひとりひとりの本音を引き出すためには、まずコミュニケーションを重ね、相手の内面に寄り添う姿勢が大切だと思います。 実行結果を見直す? 実行と結果の振り返りにおいては、まずメンバーに執行責任の自覚を促し、過干渉にならないよう注意する必要があります。計画通りに業務が進み、成果が出ているかを確認するとともに、予期せぬ事態や大きな変化がないかを定期的に見直すことが求められます。万が一不測の事態が発生した場合は、状況の収拾を最優先し、その後、リーダー自身の見落としや構造的な問題を認識し、具体的な改善策を検討することが重要です。 フィードバックは適切? また、効果的なフィードバックを行うためには、メンバーが自己の業務過程と学びを言語化できるよう働きかけ、具体的な事実に基づいて評価することが必要です。良い点と改善すべき点の双方を明確に伝え、改善策は具体的な行動計画として示すことで、次の課題へと繋げることができると感じています。 動機の理解は十分? 加えて、モチベーションは人によって異なり、社会的・金銭的・自己実現といった様々な動機があります。理論的なフレームワークを活用しながら、各メンバーの内面にある動機を理解し、個々に合ったインセンティブを提供していくことが、全体のモチベーション向上につながると考えています。 1on1はどう進める? 会社から積極的な1on1ミーティングの実施を促されている中で、何を伝え、どのように話を進めるか悩んでいましたが、今回の学びを通じてまずは相手の話に耳を傾けることの重要性に気づきました。聞く姿勢を徹底することで、メンバーが自身の考えを整理し、賛同のもと業務を任せられる環境を整えたいと思います。今後は定期的な1on1や適時のフィードバックを通じて、相手の動機を素早く把握し、エンパワーメントの視点から振り返りと改善、そして次なる課題への取り組みを進めていくつもりです。

クリティカルシンキング入門

データ分析で視点を広げる新発見

加工と分解はどう? データ分析において、「加工」と「分解」を行うことで解像度が上がり、課題や原因究明につながることが分かりました。さらに、一つの加工や分解方法ではなく、複数の切り口を持つことで別の視点から見ることができ、新たな気づきを得られる点も印象に残りました。「迷ったときはまず分解してみる」ことで、前に進めることができるというのは非常に大きな発見です。ただ考えるだけでなく、加工や分解といった方法を用いて視覚でも考えることを進めていきたいと思います。MECEという概念は理解していたつもりでしたが、「全体を定義する」という視点が欠けていたことで、実際にはMECEになっていなかったと気づかされました。week1で学んだ内容を振り返りつつ、week2で得た気づきを定着させていきたいと感じています。 プロセスをどう見直す? 企画営業の立場として、入口から出口までのプロセスのどこに課題があるのかを分析し、打ち手を考えることが求められます。しかし、これまで分解の切り口が不足していたため、改めて入口から出口までの流れを見直し、どの部分で数字の変化があるのか、またその数字をどう分解できるのかを考え直したいと思います。自分自身、目の前の数字や事象に飛びつく癖があり、思考が浅いと感じるので、データの加工・分解を活用して視覚的にも情報を整理し、思考を広げていくことを意識していきます。また、グラフや表を用いることは、数字以外の業務でもバリューチェーンを理解するなどの方法として活用できると感じましたので、データに限らず、他の業務にも応用できるかを考えていきたいと思いました。 会議資料はどう作る? 直近の会議に向けて、最新の数字を用いた資料作成を行いたいと思います。入口から出口までで何が行われ、どこに課題があるのかを表やグラフで検証し、結果を反映させていきます。企画営業として、数字を日々扱い、その改善策やさらに数字を伸ばす施策の検討も業務の一部であるため、今回の学びを次回の会議から早速活かせるよう準備を進めていきたいと思います。
AIコーチング導線バナー

「検討 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right