クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

仮説で拓く問題解決の未来

仮説の重要性は? 今回の学習で最も印象に残ったのは、「問題解決は仮説の立て方で8割が決まる」という考え方です。What〜Howの4ステップを通じて、まず問題を正しく定義することの重要性を実感しました。また、仮説は一つに固定せず、複数の切り口から検討することで思い込みを防げる点も大変参考になりました。データ収集においては、誰にどのように聞くかが分析の質を左右するため、都合の良いデータだけでなく反証のための情報も意識的に集める姿勢が必要だと学びました。今後は、3Cや4Pといったフレームワークを活用しながら、仮説思考をもとに論理的な問題解決に取り組んでいきたいと考えています。 業務での応用は? また、SIerの業務においては、今回学んだ考え方が「障害対応」、「業務改善提案」、「要件定義」の各場面で役立つと感じました。例えば障害対応では、現象に対する即時対応に加え、Whatで問題を整理し、Whereで影響範囲や発生箇所を特定、Whyで複数の原因仮説を立て、ログや関係者へのヒアリングを通じて検証を進めるやり方に変えることが求められます。業務改善においては、3Cや4Pを活用して顧客課題を構造的に捉え、直感ではなく仮説とデータに基づいた提案を行いたいと考えています。今後は、会議前に最低3つの仮説を用意し、データ収集の際にも反対意見の情報を集めるなど、具体的な行動レベルで実践していく予定です。 今後の展望は? 今後は、仮説をいつ確定させるかの判断基準や、少ないデータでの分析における工夫、さらにはフレームワークの使い分け方のコツについても、さらに深く検討していきたいと思います。

クリティカルシンキング入門

もう一人の自分が問い続ける理由

もう一人の自分とは? クリティカルシンキングの学びでは、まず「もう一人の自分を育てる」という考え方が印象に残りました。自分自身とは異なる視点を持つためにも、常に「なぜ?」と自問自答し、物事を深く掘り下げる思考習慣を意識することの大切さを学びました。 どうして多角的に見る? また、物事を多面的に捉えるためには「3つの視」や「MECE」という視点が必要です。MECEの観点から考え、多くの切り口を見つけ出す努力が重要である一方で、その点については自分自身に不足を感じる部分もあり、ライブ授業を通して実感しました。 なぜ疑問が必要? さらに、人には誰しも「思考の癖」があり、無意識の暗黙の了解に頼らず、しっかりと理由を追求することが適切な結論につながると改めて学びました。担当する試験の説明においても、一つ一つの設定について「なぜ?」と理論立てて説明することで、関係者の納得を得やすくし、円滑に試験を進めることができると感じました。また、新しいことに挑戦する際にも、内部環境や外部環境など、多面的な視点で考慮することで、幅広い賛同や建設的な改善提案を引き出せる企画が立案できると実感しました。 どうやって改善する? この学びを通して、今後の取り組みでは以下の点を意識していきたいと思います。 まず、何事にも「なぜ?」と疑問を持ち続け、たとえ一通りの結論に達していたとしても、別の視点から再検討する姿勢を忘れないこと。そして、より多くのMECEの切り口を考え出すために、自分とは異なる立場の視点を取り入れ、物事を多角的に捉える習慣を身につけることが大切だと感じました。

戦略思考入門

実践から生まれる成長の物語

競合整理はどう進む? 競合の特徴を細かく整理することは、自社の立ち位置を正確に把握するための基本です。単なる業種の違いだけでなく、顧客のニーズも含めて幅広く捉えることで、より実情に即した分析が可能となります。 施策選びはどこに? 施策を選定する際は、コストと利益のバランス、持続可能性、顧客への訴求力、そして自社の強みとの整合性を評価軸として意識することが重要です。このような基準をもとに判断することで、単なる思いつきに流されずに、意味のある選択を行う姿勢が育まれます。 差別化の鍵はどこ? また、差別化戦略を考えるときは、ありふれたアイデアに走るのではなく、他業界の事例などを参考にしながら、あえて新しいポジションを追求することが求められます。ライバルにとらわれすぎず、自社ならではの魅力を創出する視点が大切です。 改善案の優先は? さらに、インフラ改善案や運用改修案が複数ある場合、コストに見合うか、持続的な効果が期待できるか、一時的な施策にならないか、そしてチームや組織文化との整合性を考慮して優先順位を付けることが実践的だと感じました。こうした評価軸があれば、迅速かつ効果的な施策の実行が可能です。 提案のポイントは? 具体的には、課題や改善の話が出た際に、即座に複数の案を検討する習慣を身につけ、上司やチームへ提案する際にはコスト、効果、整合性について一言添えるような姿勢が重要です。自分で出したアイデアや改善施策に対して後から振り返りを行い、他の提案も「コスト、持続性、整合性」の観点で評価することで、日々の業務改善に繋げていきたいと考えています。

クリティカルシンキング入門

視点変革で広がる考え方の秘訣

視点を変えると何が見える? 私は、視点、視野、視座を変えて考えることで、考えが広がることを実体験を通じて理解しました。自分の思考が同じ場所で堂々巡りしてしまい、時間がかかる理由の一つは、これらの3つの視点を意識して物事を考えられていないことだと感じました。 視座の高さを調整するには? 視座を上げることは意識したことがあったものの、視座を下げることは試したことがなかったと気づきました。例えば、自分の部下やそのさらに部下であったらどのように見えるか、という観点を持って考えてみることを心がけたいと思います。 思考を深めるトレーニング法 同じところで思考がループする場合には、具体と抽象の間を行き来しながら「つまり?」や「他には?」と考え、頭の使い方をトレーニングしていきたいと思います。これは、事業の改善案を検討する際にも役立てたいと考えています。 広い視野で課題を発見する 私は自分やステークホルダーの視点に偏りがちですが、実務を遂行するメンバーやそれ以外の従業員の視点も取り入れてみようと思います。そして、改善案を検討する際には、課題を洗い出す必要があるため、具体と抽象を行き来して「つまりこれです」を見つけ出したいです。 仕事に役立つメモ法とは? 考えに没頭してしまうことがあるので、意識を戻すために、仕事用のPCやノートケースに以下のようなメモを貼っておくことにしました: - 3つの視 - 「つまり?」「他には?」 - 批判的なもう一人の自分 頭の中を整理するためには、アウトプット(紙に書く、PC上のツールを使うなど)も活用していきます。

データ・アナリティクス入門

ロジックツリー活用でKPI改善を目指す!

ロジックツリーって何? ロジックツリーの使用方法について新しい発見がありました。ロジックツリーには、変数分解に加えて「層別分解」という使い方があるのです。層別分解は、全体を複数の部分に分けて同じ次元で揃える方法で、それぞれの階層の下には同じ要素が並ぶイメージです。一方で変数分解は、要素の掛け算を分解し、原因を特定するのに役立ちます。これらの手法を試行することにより、より包括的で明確な分析が可能になります。 営業支援機能はどう? R&D部門における営業支援機能のひとつとして、顧客向けPoCの作成や自社商材のクロスセル・アップセルの立案があります。しかし、これらの活動においてチームのKPI進捗率に大きな差が見られます。そこで、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することが重要です。一連の要素には、要素A→B→C→PoC作成→D→E→クロスセルなどがあります。 KPI設定は見直す? 目的は、KPI管理している指標の前段にある要素のKPI設定に漏れがないかを確認することです。このために、まず関係者とブレストを行い、現在の管理状況に関わらず関連しそうな要素のアイデア出しを行います。その後、出てきたアイデアを元に、現在のKPI設定が定量的かどうか、またMECE(Mutually Exclusive and Collectively Exhaustive)であるかを検討します。このプロセスの中でロジックツリーを使用し、特に不慣れな現在は層別分解と変数分解の両方を試し、それぞれの使用感をメモしておくことが有効です。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

アカウンティング入門

5つの利益を直感的に理解する旅

P/Lの基本を理解するには? 損益計算書(P/L)の見方や5つの利益の関係について、講義を通して自社のP/Lを確認することで、大まかな理解が進み、頭の整理ができました。特に、大まかに要点を捉える方法が大変参考になりました。また、実践演習を通じて、5つの利益に繋がる具体的な構成要素についての理解を深めることができました。 営業利益を上げる方法とは? 特に、営業利益の数字を上げるために、安易にスタッフの削減などで販管費を下げるのではなく、week1で学んだ「顧客と提供価値」のコンセプトを意識し、顧客への提供価値の質を維持しつつ、全体を俯瞰しながら販管費を下げる方法を考えることが重要だと理解しました。 営業利益と当期純利益の要素は? 自社の損益計算書を確認し、営業利益や当期純利益に影響を与えている要素が何かを把握することが必要です。販管費や特別損失などの内容を財務諸表作成部署へ問い合わせ、その内容の妥当性を短期間で判断できるようになりたいと思います。 決算結果の推移をどう見る? また、半期決算の財務諸表を見ながら、5つの利益の対前期、対前年の結果がどう推移しているのか、その要因を具体的に特定し、即座に議論と改善策の検討ができるようにすることを目指しています。 財務諸表をどう活用する? 今後、他社の財務諸表を参照しつつ、5つの利益と各項目の意味を具体的にイメージしながら取り組んでいきたいです。「決算書「分析」超入門2024 100分でわかる!」を活用して、より実践的に理解し、活用できるように努力します。

デザイン思考入門

体験で見える!サービス改善のヒント

どうして金融調査? 金融関連の業務を担当するにあたり、まずは競合調査の一環として、顧客満足度上位の企業のwebページを確認しました。調査項目は、サービス内容、金利、セキュリティ対策の三点です。 なぜ実際に試す? 担当クライアントは、顧客満足度においてサポート部門がトップである一方、web・アプリ部門では3位という評価でした。UIおよびUXの強化を目指すため、実際に口座を開設し、サービスを体験することにしました。 体験中の違和感は? 口座開設のプロセスでは、窓口での対応とweb上でのマイナンバーカードによる審査を利用し、手続きは2日ほどで完了しました。全体的にスムーズでストレスを感じることはほとんどなく、スマートフォンを使った顔認識に関しては、背景に余計なものが映らないようにするためか、認識に少し時間がかかりました。 営業メールの謎は? 一方、口座開設後は、毎週のようにメールでの営業連絡が送られてきました。そのため、金利に基づく金額の通知が他の営業メールに埋もれてしまい、見逃されることがあるという印象を持ちました。 改善要求の真意は? クライアントからはUIおよびUXの改善依頼があり、提供された情報だけで対策を検討していた状況に不安も感じました。実際にサービスを利用しなければ気づけなかった問題点について、担当者間で共有しています。たとえば、営業メールの配信頻度を隔週に変更することや、メールタイトルに【レポート】やサービス名を含めることで、ユーザーが利用状況を一目で把握できるようにする提案を考えています。

クリティカルシンキング入門

ビジネスの課題解決力が驚くほど向上した方法

分解手順を学ぶ意義は? 分解の手順について学んだことで、ビジネスモデルの検討やプレゼン資料の作成が大いに改善されました。 効果的なビジネスモデル検討法 まず、ビジネスモデルの検討では、これまでは漠然とサプライチェーンやバリューチェーンの軸で考えていましたが、層別分解を導入することでより具体的に検討できるようになりました。この方法では全体を定義し、それをMECEに分解して視覚的に図示することで、漏れや重複が無いか確認します。具体的には、層別分解、変数分解、プロセス分解という手法を用い、それぞれの分解結果を俯瞰することで新たな発見が得られることが多々ありました。 プレゼン資料改善の鍵は? 次に、プレゼン資料の作成についてです。全体像を定義し、それを具体的な内容に落とし込む際に、MECEの考え方をしっかりと取り入れました。その結果、伝えるべきポイントをより明確に整理することができ、聞き手にとって理解しやすいプレゼンテーションになったと感じています。 日常での分解思考の鍛え方 また、日常の中でも分解思考のクセをつけるために、通勤中に目に入る店を様々な観点で分解する練習を行っています。業態やターゲット層、営業時間、品揃えの重点など、仕事とは関係ない対象で練習することで、分解するスキルが向上しました。 分解がビジネスに与える影響とは? 全体像を言語化し、その後視覚的に分解項目を視える化する過程を実践することで、物事を多角的に捉える力が養われました。結果として、ビジネスにおける課題解決の精度が向上したと実感しています。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。
AIコーチング導線バナー

「検討 × 改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right