戦略思考入門

優先順位で達成するキャリア成功の秘訣

優先順位の付け方とは? 日々の業務において、優先順位をつけて取り組むことは重要です。自分が積極的に学ぶことで将来、自分や自社に還元される効果が高いものは、時間がかかっても取り組む価値があります。一方で、効果が低く必要性も低いと感じられるものについては、上司に相談することも一つの方法です。 新規事業の利益予測はどうする? 新規事業案件に関しては、立ち上げる際にその案件がもたらし得る利益や必要な資源を最高、標準、最低のケースで予測することが重要です。実際に市場に出して結果を見たうえで、課題が出てきた場合は、これらの情報に基づき取捨選択を行いましょう。 将来の業務改善方法は? 将来の業務については、各事業所ごとに業績やROIを確認し、製造・販売戦略を改善する必要があります。人的資本の投資優先順位には特に意識を払い、限られたリソースを最大限に活用する工夫が求められます。 キャリア形成のための計画は? キャリア形成の観点からは、3年後や5年後にどのような姿になっていたいかを基に、現在の業務がそのルートに合っているかを判断することが大切です。人事との面談を通じて、必要なスキルや経験を明確化し、具体的な行動計画を立てることが求められます。 効率的な日々の業務管理法は? 日々の業務では、業務をリスト化し、自分や自社への効果を基に優先順位を決めることで効率的に取り組むことができます。例えば、提出期限のある資料や議事録の作成、出張準備、自己研鑽など、それぞれの重要度や緊急度に基づき時間を割り当てると良いでしょう。 拠点改善のための戦略は? 拠点ごとの売上高や製品割合、各製品の利益率に基づき、拠点への注力の仕方や販売戦略を決定することも重要です。中期経営計画に基づき、拠点ごとの改善を進めることで、実現に向けて具体的なステップを踏むことができます。 キャリア目標の具体化はどう行う? キャリアを見据えた行動として、3年後には海外拠点の管理、5年後には駐在という目標を持ち、その実現のために必要なスキルや経験をリスト化し、具体的な行動計画を立てましょう。例えば、財務経験が必要であれば人事に相談し、経営企画業務にもっと時間をかけるなど、現在の業務を見直すことが重要です。常に自分の行動がどのような意味を持つのかを意識しながら、積極的に取り組みましょう。

戦略思考入門

フレームワークで見つけた成功への鍵

フレームワーク活用の重要性とは? 今週は、ビジネス課題を検討する際に有用なフレームワークについて学びました。具体的には、顧客、競合、自社の各要因を考慮する「3C」、さらに政策、経済、社会、技術の要因を分析する「PEST」、これらを組み合わせた「SWOT」の有用性と注意点についてです。 体系的な分析の必要性を感じた瞬間は? 特に、3Cフレームワークでは「顧客⇒競合⇒自社(強み)」の順序で考えることが重要であると新たに理解しました。これまでは順序を意識せずに進めていたため、体系的な分析の重要性を実感しました。 フレームワークで解決策を見つけるには? 実際の演習を通じて、フレームワークを使わずに個人の経験に頼ると、課題や施策が偏るリスクがあることも学びました。日常の仕事においても、要因を整理して議論する人とは話がスムーズに進むのに対し、要因が散漫な人との議論は難しいと感じていました。フレームワークを活用することで、議論をスムーズに進めることができると感じています。 ビジネス課題を考察する際のポイントは? ビジネス課題を考察する際に気を付けるべき点として、以下の3つを学びました。いずれも複雑な課題ですが、早速実践に移したいと考えています。 SWOT分析がチームに与える効果は? コールセンターの満足度サーベイ結果に関して、メンバーに課題と対策を考えてもらう予定です。そのために、疾患領域ごとにSWOT分析を使用して検討・発表してもらうアイデアを思いつきました。SWOT分析によって、様々なメンバーが共通の要因で検討しやすくなると考えています。さらに、結果を全体的に検討する際も、統一された視点で議論できるため、有用であると期待しています。 今後の行動計画とは? 今後の行動計画として、以下の2点を立てました。 1. SWOT分析のフレームワークを準備し、メンバーとの課題や対策の検討方針を明確に説明する。明確な指示と方向性を提供することで、効果的な議論を促進します。 2. 私自身もコールセンターの満足度サーベイ結果について、SWOT分析や3C、PESTを用いて課題や対策を検討し、分析結果を具体的にまとめて共有します。この分析は組織戦略を考えるうえで非常に重要ですので、私個人の結果も整理し、組織全体の理解を深めるために貢献したいと考えています。

デザイン思考入門

発想転換で掴む次世代解決策

どうして視点変更? ライブ講座のプロトタイプ発表では、視点を変えることの大切さと、課題解決において意外な効果があることを学びました。特に登山用バックパックをテーマとして、課題の捉え方を変えると解決策のアプローチも異なり、全く新しい応用例につながることが印象的でした。また、参加者全員が否定せずに各自のアイディアを前向きに受け止め、議論が活発に進んだ点が良かったと感じます。初期段階では改善の余地があるアイディアも多いですが、そうした点に踏み込んで議論する雰囲気作りが重要だと実感しました。 効果はどこから来る? 今回の体験は、単に商品開発に留まらず、他の業務にも応用可能な思考の枠を広げるワークショップとして十分な効果があると感じました。自分の思考の癖に気づく機会にもなり、技術的な面は後回しにしてまずは豊かな発想を引き出すステップが新たなアイディア創出に必要であると学びました。 なぜ議論は難しい? また、アイディアを出す際にはスキャンパー法を試してみたいと思います。今回のシェアや議論はスムーズに進みましたが、実際の職場では以下のような理由からディスカッションが難しい場合もあると感じました。 ・ポジティブな議論に慣れていないため、否定的な雰囲気になりがち ・結論を急ぐ傾向があり、十分な議論が行われない ・現状維持を好むため、新たなアイディアが無視される ・いかにアイディアを出しても、従来通りの結論に戻ってしまうと感じる ・突飛なアイディアを受け入れる土壌が整っていない ・質問を避ける傾向にある こうした状況に対しては、1~3枚程度のスライドにアイディアをビジュアル化し持ち寄ることで、言葉だけでは伝わりにくい発想を明確にし、議論を促進できると感じました。実際、業務においてプロトタイピングの機会は少ないものの、AIやクラウドサービスを利用すれば自分の考えを手軽にビジュアライズできるため、非常に役立つと実感しました。 どう未来を描く? 今後は、対象顧客の課題をしっかり理解し、その中から解決すべき点を明確にした上で、アイディアの出し方やビジュアル化、フィードバックの仕組みを業務に取り入れるステップを意識していきたいと思います。一旦アイディアを数多く出し、形にして共有することで、より実践的な問題解決につなげていく方針です。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

クリティカルシンキング入門

ピラミッドで磨く伝える力の秘訣

伝え方の基本は? このトレーニングでは、人に正しく言葉を伝えるための方法として、「日本語を正しく用いる」「文章を評価する」「手順を踏んで書く」といったアプローチについて学びました。実際の仕事や日常生活の中で、うまく伝えられていないと感じる場面が多々あるため、その要因と改善策を整理することができました。 評価の視点は? 特に印象に残ったのは、「文章を評価する」と「手順を踏んで書く」という点です。前者では、主張に対する理由づけにおいて、相手が求めるニーズが異なることを意識することの重要性を学び、相手のニーズに合った理由づけをするために自分の視点を明確にしながら言葉を組み立てる必要があると感じました。 手順の整理は? また、「手順を踏んで書く」では、ピラミッドストラクチャーを用いて、主張とそれを支える理由を「柱」のように整理する手法を学びました。対となる概念を意識した根拠の選定から具体的な表現にまで至る流れを意識し、今後の文章作成に活かしていきたいと考えています。 新たな発見は? 全体を通して、「言葉を書くこと」が思考力の向上につながるという点、また、自己流の文章ではなく他人の文章を参考にしたトレーニングが効果的であるという具体的なアクションの示唆を得ることができました。これらの学びを実際に実践していきたいと思います。 実践で感じる? 日々の会議や顧客とのやり取り、プレゼンテーションにおいて、今回の研修内容を積極的に活用することで、伝えたい主張に対して正しい理由づけがなされ、理由が漏れなく具体的に説明されるようになると期待しています。特に会議では、事前に共有された資料などをもとに準備を進め、ピラミッドストラクチャーを活用して、主張と根拠が会議の目的やゴールに適切に結びつくよう工夫しながら実践を重ねていきたいと考えています。 意見発信はどう? 私自身、職場では自分の考えを率直に述べるという文化があるため、意見を発信することが求められています。しかし、過去の失敗経験やプレッシャーから、意見を述べることに対して苦手意識を持っていた面もあります。今後は、複数の根拠を示したうえで、それらが会議の目的としっかり結びついているかを検討しながら、より分かりやすく効果的なコミュニケーションを目指していきたいと思います。

クリティカルシンキング入門

イシューを意識して業務改善を実践するコツ

問いから始める意義とは? 仕事や業務の成果を上げるために、イシュー(問い)に基づいたアプローチが非常に重要だと感じました。以下に実際の感想文を編集したものを記載します。 まずは、問いから始めることが大切です。自分が問題に直面した際、最初に何を問うのかを明確に意識し、その問いを組織全体で共有することが肝要です。問いは具体的かつ一義的に理解できる形にし、常にその問いを意識して進めることで、ぶれない対策を講じることができます。 データから課題を見極めるには? 実際に、自身の業務において成果が出ないときや行き詰まりを感じたときには、データを分解し、その中から最も重要な課題を見極めることが必要です。この過程を通じて、適切なイシューを特定し、その改善策を多く出し、最適なものに絞り込むことが有効です。 組織全体で共通イシューを議論する重要性 また、組織運営においてもイシューに焦点を当てることが重要です。特に、KPIの設定や業務効率化、新人の教育などにおいて、多くの課題があるため、組織全体でイシューを明確にし、議論する機会を設けることが求められます。 MTGをどう改善する? 次に、MTG(会議)の改善についてです。現状では、自他部署とのMTGが報告と意見交換で終わることが多いですが、事前にイシューを特定し、議論の焦点にすることで、MTGをより意義あるものにし、業務改善につなげることができます。 さらに、自分自身の業務においても、行き詰ったときや結果が出ないときには、状況やデータを分析し、イシューを特定して改善策を考える習慣をつけることが大切です。 定例MTGでのイシュー活用法 具体的には、自組織の定例MTGでイシューを提示し、議論の対象とすること、都度、事前に上長にネゴシエートし、組織内に告知してメンバーに考えてもらっておくことが必要です。また、マーケティングや営業のキャンペーン結果をフィードバックする際にも、結果の分析で見えてきたイシューを特定し、事前に議論の機会を探ると良いでしょう。日々の業務においても、週1回以上、イシューを特定して改善策を考える習慣をつけるようにします。 以上の点を意識しながら、日々の業務や組織の運営に取り組むことで、より効率的で効果的な成果が得られることを期待しています。

戦略思考入門

戦略的思考で最速ゴールへの道

戦略思考を理解できた? Week.01からWeek.04までを通じて、「戦略的思考」という概念を全体的に理解することができました。この学びを通じて、「戦略的思考」とは、以下のようなプロセスであることが分かりました。まず、適切なゴールを設定し、そこから現在地までの道のりを描きます。そして、その道のりを可能な限り最短で到達するために、取捨選択の重要性が求められます。 情報整理って大事? 目的や目標を達成するためには、まず情報を整理し分析してから、基本戦略として差別化を図ることが求められます。そして、実行に移す際には、取捨選択が必要となり、場合によっては戦略の検討段階で捨てることによるメリットを考えることもできます。このプロセスにおいて、取捨選択の実施は必ずしも一定の順番で行われるわけではなく、場合によっては前後することもあります。 慎重な取捨選択は? 取捨選択の際に重視するべきポイントとして、顧客の利便性を高めるために敢えて捨てることもあり得ます。また、常に最適解を求め、「惰性」に流されないための思考停止を避けることも重要です。さらに、専門家に任せるという観点から外注やアウトソーシングを検討することも一つの手段です。 優先順位はどう付ける? 優先順位を付ける際のポイントですが、特に資源が限られている場合には、効用の最大化を念頭に置いた判断が求められます。ここで役立つのが、無差別曲線の概念です。また、異なる要素が互いに打ち消し合う場合には、注力すべきポイントを明確にし、メリハリのある投資を検討する必要があります。 業務を見直すには? 実際の業務においては、取捨選択の際のポイントである「惰性」に流されないことや、「餅は餅屋に任せる」という戦術を活かすことができると考えています。例えば、日々の業務を振り返り、目的や目標に沿って改善すべき点があると感じた場合、これを行動に移していきたいと思います。また、専門外の業務に過度に深入りせず、適切に専門家に任せることで、最速でゴールに到達するための提案を行うことが可能です。 学びをどう活かす? これらの学びを活かし、目的達成に向けた適切な取捨選択と効果的な優先順位付けを実行に移し、より良い成果を目指していきたいと感じています。

デザイン思考入門

共感で見つける本質解決のヒント

共感と課題は何? 今回の学びを通して、問題解決のプロセスにおいて「共感」「課題定義」「発想」「試作」「テスト」の各段階が重要であると実感しました。最初の共感の段階では、単に相手の声を聞くのではなく、その背景にある本当の課題を深堀りすることが必要だと感じました。続いて、課題定義では、表面的な問題にとらわれず、本質的に解決すべきポイントを明確にすることの大切さを学びました。 アイデアはどう生まれる? 発想の段階では、固定観念にとらわれず自由な視点でアイデアを広げることが、新たな解決策を生み出す鍵であると印象に残りました。試作では、完璧を求めるのではなく、まず形にすることで実際の課題を発見しやすくなるという点が重要です。そして、テストを通じて想定と現実のズレを把握し、より実用的な形へと改善できると実感しました。これらの考え方は、バックパックの開発だけでなく、地域づくりやイベント企画にも応用できると感じています。 地域の課題は何? 地域づくりに活かすためには、まず共感のステップを大切にし、住民の声を丁寧に拾い、その背景や本当に求められているものを深掘りすることが重要です。単なる意見収集に留まらず、本質的な課題が見えてくることで、地域の長期的な発展に必要なポイントを明確にできます。 イベント対策はどう? さらに、具体的な事例として、イベントの参加者減少に直面した際は、単に告知方法の改善だけでなく、イベント自体の内容を見直すなど根本的な原因にアプローチする必要があると感じました。アイデア創出の段階では、地域の異なる世代や職種の人々を巻き込み、ブレインストーミングなどを活用して多様な視点から新たな取り組みの方向性を探ることが効果的です。 実践から何学ぶ? その後、小規模な試作を実施し、住民の反応や参加率を観察しながらイベントや施策を改善していくのが望ましいです。最後に、テストを繰り返しながら、参加者のフィードバックを基に内容を調整し、持続可能な形にブラッシュアップしていくことが求められます。こうしたプロセスを継続的に振り返り、地域の変化に応じた柔軟な対応を心がけることで、住民が主体的に関われる仕組みを作り、地域づくりの可能性を広げていきたいと思います。

クリティカルシンキング入門

思考整理の具体的手法と実践の大切さを学ぶ

言葉の重要性に気づく 今回大事だと感じたポイントは以下の四点です。 まず、自分の言葉により相手の負担度が変わってしまうこと。これは、サボってはいけないということを意味します。次に、「誰がどうしたか」を明確に伝わりやすい文章にすることが重要です。さらに、結論を支える根拠を複数出すことが求められます。そして、理解を得たい相手が何を気にするかを考え、そのポイントを押さえた根拠を提示することが重要です。 説得力を増すには? また、説得力を増す手法として以下の点を学びました。主語、述語を正しく使うこと、短文で分かりやすくすること、結論を先に述べ根拠をあとにすること、根拠の観点が何であるかを意識すること、そして思いついた根拠の対となるものを考えることです。さらに、根拠を具体化することも重要です。 一方で、自分が根拠として具体化して出した例は根拠として弱いものでした。模範解答のような強い根拠を出すためにはどうすれば良いのかを学ぶ必要があると感じました。 学びをどう活かす? 自分自身の思考の整理やそれを伝える必要がある場合に今回の学びを活用できると思いました。具体的には、上司や部下、関係部署への説明、メールやチャットでの投稿、アプリ開発や販売施策における優先順位決めや実施判断、会議の内容整理などです。 また、具体的な手法をいくつか学べましたので、後輩指導時にも活用していきたいと考えています。 効果的な手法とは? 例えば、検討や整理の際にはピラミッドストラクチャーを作ること、根拠の観点が何かを考えること、また他の強い根拠となる事例がないかを検討することが有効です。説明や伝達の際には、伝えたい内容を最初に述べること、そして主語述語を正しく使うことが効果的です。 実践の大切さを学ぶ 今回の学習については、自分自身でも落とし込めていない点が多く、グループワーク課題を行う前に振り返りが必要だと感じました。実際に行ってみることで根拠の観点がずれていたり、自分の考えを文章にすることで異なる結論が導かれることもありました。これにより実践することの大事さを改めて感じました。そのため、WEEK1の復習として考えたことを文章化し、WEEK3のスキル定着を図りたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

「実際 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right