データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

デザイン思考入門

体験から生まれる驚きと気づき

体験から何を感じた? 実際に体験することで、ユーザーの気持ちに気づく大切さを学びました。調査実施時、直接体験できない場合でも、身近な人々の行動を想像し、その視点から課題やニーズを探ることが重要であると感じています。さらに、可能な範囲でインタビューを実施し、具体的な問題点や求められているものを丁寧に理解するよう心がけています。 体験が生む共感とは? また、実際に体験しなければ気づけない部分が多いことを改めて実感しました。ユーザーが体験している状況を自らも体験することで、共感の場が生まれ、より深くユーザーの視点を理解できると感じています。 商品開発のヒントは? 一例として、キリンの第3のビール『本麒麟』の開発プロセスが紹介されました。まず定量調査で過去の失敗を洗い出し、その結果を踏まえて定性調査を実施することで、ユーザーニーズ(インサイト)を具体的に把握。このプロセスは、社内メンバーを説得する際の根拠となり、商品開発への示唆にもつながると学びました。 体験で共感深まる? さらに、バックパックに関する事例では、ユーザーと同じ体験をすることで得られた気づきが、より深い共感へと結びついたことも印象に残りました。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

クリティカルシンキング入門

イシューを特定するノート習慣の効果

イシューって何? イシューとは、「今答えを出すべき問い」を指します。イシューを特定する際に重要なポイントは、「問いの形にすること(例:●●するために、何をすべきか?)」、具体的に考えること、そして、そのイシューを押さえ続けることです。これにより、考えが進む中でぶれないようにすることが可能です。 問いをどう形にすべき? 私は問題提起の際に、これらのポイントを十分に意識できていなかったと感じています。特に、問いの形に変換することができていませんでした。今後は、問いの形でイシューを定義するように心掛けたいと思います。その他の二つのポイントについては、特に意識せずとも自然に押さえて考えを進められていたので、このまま継続して意識していきます。 解像度を上げるには? 解像度が低い物事を考える際には、まずイシューを特定することから始めたいと考えています。具体的な方法としては、急にスライドや文章を書き始めるのではなく、まずノートにピラミッドストラクチャーを描いてイシューを特定する習慣をつけます。そして、そのイシューが本当に適切かを再考し、他に重要なイシューがないかも考えながら、思考を深めていくようにしたいと思います。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

データ・アナリティクス入門

データ活用で未来を変える!実践的AB分析の学び

AB分析の学びとは? AB分析の考え方を学んだことは非常に参考になりました。以前の職場でGoogle Analyticsを使って広告を打っていた時、状況や変更条件を明確にせず、場当たり的に行動していたことを反省しています。 仮説を立てる重要性を知る また、問題解決の過程で仮説を立てることの重要性も学びました。これまではなんとなくデータを集め、目的が薄いままに対応策を練ることが多かったため、今回の学習でその姿勢を改める必要があると感じました。 長期的な効果検証の可能性 さらに学んだこととして、数か月単位で施策を変更するのは難しいものの、一年から数年単位で効果を検証することは可能かもしれないということです。例えば、入学後のパフォーマンスを分析して入試の内容を変える、といった具体例が上げられます。 必要なデータをどう見極める? 現在、大学内で取得しているデータについて、真に必要なものは何か、また不足しているものは何かを見極めたいと考えています。学生生活の構成要素を学業やサークル活動、就職だけでなく、より多くの要素に分解することで、学生のリアルな状況がより理解できるのではないかと思っています。

リーダーシップ・キャリアビジョン入門

評価基準を活用した効果的なフィードバック術

フィードバックはどうする? 評価フィードバックを効果的に行うためには、評価基準や期待度に基づき、相手自身が振り返りを言語化することが重要だと理解しました。具体的な事実に基づいた評価は、納得感のあるものになります。一方的な伝達だけでなく、相互の認識を調整し合意に至るようなフィードバックを心掛けたいです。 部署はどう進む? 年度末や次年度に向けて、すべてのプロジェクトを自身で実行せず、メンバーにエンパワメントを行い、部署全体で同じ方向に進むことを目指します。1on1ミーティングや短い打合せを通じて、部下に言語化を促し、具体例をもとに対話しながら評価基準となるプロセスを共有していきます。 評価基準を統一する? 今年度の評価基準や期待を統一するために、次の取り組みを行います。まず、メンバー全員に現在の業務とプロジェクトの会社方針との関連性を説明し、浸透させます。また、来週中にエンパワメントを完了し、週次で進捗管理とフィードバックを実践します。さらに、各プロジェクトの担当者を選任し、会社が目指す方針への意義と結びつけてゴールを示します。そして、フィードバックを習慣化するための予定を確保していきます。

戦略思考入門

差別化を極める学びの軌跡

誰に価値を届ける? 差別化について学ぶ中で、様々な視点や切り口から「良い差別化」を実現する必要性を実感しました。まず、価値を提供すべき顧客を明確に規定し、深く理解することが、効果的な差別化の第一歩であると再認識しました。 模倣防止はどう実現? また、持続可能な仕組みを構築し、競合に模倣されにくい戦略を打ち出すために、VRIO分析のようなフレームワークを用いて立ち止まって考えることの重要性を感じました。特に、VRIO分析では、企業文化や組織といったソフトな要素が有効な資源となり得る点が印象的でした。 企業文化をどう表現? 一方で、共通認識としてユニークな企業文化を保有しているという認識はあるものの、それがどのように自社の価値創造に寄与しているかを十分に言語化できていないと感じました。今後は、VRIO分析を活用して、競合と自社それぞれの強みや特徴をより深く理解し、注力すべきポイントを明確にすることで、戦略の方向性を提案していきたいと思います。 実例はどう活かす? さらに、VRIO分析の活用方法についてまだ理解が不十分な部分があるため、具体的な事例を参考にしながら知識を深めていきたいと考えています。

戦略思考入門

体験から導くブランドの秘訣

本質はどう理解する? フレームワークやビジネスの法則は、一見すると万能に感じられる部分もありますが、例外や適用の難しい場面があると感じています。本質を理解するためには、単に表面的な知識を得るのではなく、自分自身で実際に試し、体験することが重要だと実感しました。 現業にどう活かす? 現業では商品生産に直接関与していないため、自分の業務にそのまま当てはめるのは難しいと感じつつも、担当しているブランディング業務においては、同じ考え方が応用できるのではないかと思います。企業理念を深く理解している社員が育つことで、部署が変わった際にも周囲に良い影響を与え、企業の方針に沿った業務遂行が可能になると考えています。また、ブランディングの認知度や信頼性が向上すれば、新たな事業領域に進出する際、広告コストの削減や新規顧客獲得のハードルを下げる効果も期待できるでしょう。 人材活用はどう? 今後は、人材活用による範囲の経済性について、部署が異なった場合にどのスキルや行動が役立つのか、具体的な事例を探りたいと思います。自社の人材の核となるキーワードを見出し、企業理念の浸透がもたらす効果を明確に説明できるよう努めていきたいです。

データ・アナリティクス入門

業界事例で実感!仮説検証術

どうして分解が有効? 様々な要素に分解して仮説を組み立て、データを意識した点はとても良いと思います。具体的な業界事例に当てはめて考えることで、理解がさらに深まるでしょう。 具体例はどう映る? 仮説を立てる際には、具体的な業界やビジネスシーンの例を考えると、思考がより深まります。また、データを検証する際にどのようなツールや手法を用いると効果的かを検討することも大切です。 実践で活かすには? 実際のビジネス状況で仮説検証をどう活用するかを考え、具体的に練習することが求められます。引き続き、さまざまな角度から課題を検討してみましょう。 なぜ幅広い視野? 課題は狭い視野だけでなく、幅広い角度で網羅的に考える必要があります。そうしないと、本当の課題を見落としてしまう恐れがあるため、どのようなデータで検証できるかもしっかりと検討することが重要です。 共有はどう役立つ? 自分の考えに固執せず、要素の重要性を周囲と共有しながら多角的に検討していくことが必要です。そして、どのように検証すべきか、またどの項目を指標として設定すべきかを同時に整理していくことが求められていると感じました。

マーケティング入門

強み発見で切り拓く未来への道

自社の強みをどう捉える? ある実例を通して、対象となる顧客に自社のどのような強みを最適に組み合わせて提供するかが非常に重要であると感じました。そのため、主観的な観点に加え、客観的な視点から自社の強みを捉える必要性を実感しています。 市場の見極めは? 市場をセグメント分けし、各切り口から自社商品を検討することで、販促の手法の見直しや新たな商品開発につなげられると考えています。 セグメントをどう活かす? 今後は、セグメンテーションとポジショニングマップの活用を意識していきたいと思います。業務異動によりコンテンツ企画部門からは離れましたが、広報業務に関わる中で自社商品の発信にこれらの手法を取り入れることで、より効果的な情報提供が可能になると期待しています。 会議での発信は? 具体的には、自社商品のセグメンテーションや強みの洗い出し、ポジショニングマップの作成を行い、広報やコンテンツ企画に関わるメンバーとの会議で新たな発信方法を提案していくつもりです。 イベントで伝える? 来月に予定されているイベントなどの発信内容を検討する際にも、これらの手法を積極的に活用し、実践していきたいと考えています。

データ・アナリティクス入門

仮説と比較で拓く学びの扉

良い比較って何? 「分析の本質は比較である」という考え方を学び、良い比較を行うためには「条件を揃える」ことや「分析の目的」に沿った比較対象を選ぶことの大切さを実感しました。 どうして視野を広げる? グループワークでは、これまで自分では思いつかなかった観点が提示され、「そんな考え方があるのか」と新たな視野を広げることができました。分析の仮説立ての際にも、さまざまな意見から多くを吸収し、視野を広げて考える重要性を再認識しました。 データは役立つ? また、売上向上の施策を検討する際には、これまで感覚に頼っていたアプローチを改め、「データ分析の目的を明確にすること」や「仮説を立て、意味のあるデータで比較すること」を実践することで、より効果的な施策へと結びつけられると感じました。たとえば、あるKPI指標を追う際、「特定の行動をしている人」と「そうでない人」とで進捗率を比較することにより、具体的な違いを把握できる点は非常に示唆に富んでいます。 学びをどう活かす? この講座で得た学びを、実際の現場でどのように活かしていくか、実践してみた結果の成功事例や失敗事例も含め、これからも共有していきたいと思います。

「具体 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right