データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

クリティカルシンキング入門

気づきが変えた!思考の深掘り術

なぜ深掘りが重要なのか? 物事に対して「なぜ」と深く掘り下げる姿勢が大切だと気づきました。データや他人の意見を表面的に捉えることが多かったことに改めて気づかされました。クリティカル・シンキングがなぜ必要なのか。物事の意味を深く考えることが、その本質を捉えることに結び付くのだと実感しました。 ロジックツリーで得られる新しい発想とは? また、ロジックツリーの考え方を学び、自分の思いつきに頼った方法から離れることができました。課題に対して原因をカテゴリーに分けて掘り下げることで、新しい発想を得られることがあります。今後もこの考え方を活用していきたいと思います。 なぜデータの深掘りが必要なのか? 具体的には、新商品の企画立案や商品の売上分析の際に役立つと考えています。市場調査や顧客の声を参考にしている中で、データをそのまま受け取ってしまうことがあるため、なぜそのような意見やデータになるのか深掘りする思考を持ち、情報を整理することに努めたいです。また、売上分析では、顧客の感じ方をより深く理解するために「なぜ」を問い続けることで、具体的な施策提案につなげられると考えています。 思考整理の習慣化はどう進める? 一度学んだからといってすぐに身につくわけではありませんが、まずは日々の考え方の習慣づけから始めて、自分の能力として高めていきたいです。例えば、上司に確認する予定の内容について「なぜそう思ったのか」を考え直し、思考整理を進めます。また、現在の課題や案件にロジックツリーを使い、漏れや重複がないかを確認しながら原因と考察をしていく予定です。

戦略思考入門

はっきり決める勇気!選択と集中の秘密

選択と集中の意義は? 選択と集中はよく耳にする言葉ですが、実際に実践するとなると難しさを感じます。自身の生活においても、本や衣類、思い出の品を手放すことが容易ではないように、会社ではプロジェクトや事業において同じ課題があると考えています。 捨てる条件は? 捨てる際に最も困難なのは、その条件を明確にすることだと感じます。例えば、本であれば、どの段階でその役割を終え、手放すかという目標設定が必要です。同様に、衣類ではいつ再度着用するかなど、明確な基準が求められます。 撤退判断は? また、事業に関しては、撤退の判断基準が不透明な場合が多いと感じます。たとえば、全体の売上に対して事業部の売上がどの程度後退したら撤退するべきか、また累積赤字がどこまでなら許容され、どの段階で撤退するかといった具体的な観点や条件について、社内で議論できればと思います。 投資効果の見極めは? 製品企画や技術開発、販売営業といった分野においては、どのプロジェクトが投資効果を生むのかを見極める必要があります。そして、事業全体としては、どの段階で撤退や新規実施を行うのか、明確な判断基準を持つことが大切だと感じました。これらの基準を明確にすることが、今後の業務において判断や行動に大いに役立つと学びました。 指標の重要性は? 一般的に重視される品質、コスト、納期といった指標がいかに重要かを再確認しました。タスク、プロジェクト、事業ごとに判断基準を設定し、それに基づいて進めるとともに、自分が取り組む業務には必ず情報発信を織り交ぜるよう努めたいと強く感じています。

デザイン思考入門

共感が創る企業支援の未来

共感の大切さは? 企業支援を主な業務とする中で、最も効果的なのは、デザイン・設計の段階で「共感→課題定義→発想→試作→テスト」という流れを取り入れることだと感じています。特に「共感」のステップに重点を置くことで、ユーザーの深層ニーズをより正確に引き出すことが可能になります。このため、課題定義に入る前に必ず共感の把握を行うプロセスを取り入れるべきです。 具体策はどう? また、共感の手法や具体例については以下の点を改めて検討しています。具体的には、共感のプロセスでどのような方法を用いて深層ニーズを引き出しているのか、そしてそのニーズを把握した後、どのような形で課題定義に活かすのかという問いに対して、実践に即したアプローチを模索する必要があります。 実践の工夫は? 実践面では、十分にそのままの形で実施できていないと感じることもありますが、振り返りの中で、ユーザーの情緒的な側面に配慮しながら課題定義を行うことで、内部での納得度が高まり、最終的な成果にも良い影響を与えると実感しています。これまでも一部では提案を行ってきましたが、さらなる観察やヒアリングを通じて、より具体的な対策を講じるべきだと考えています。 未来へどう進む? 今後は、企業支援の流れにおける「共感」から始まる一連のプロセスを、より具体的かつ実践的に展開していきたいと考えています。さらに、マーケティングのみならず、経営や企業変革全体を視野に入れた支援を実施するため、従来の課題解決から課題定義へのシフトを図り、自身の支援サービスのあり方についても再検討する予定です。

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く成長への道

フレームワーク何故有効? 課題に取り組む中で、仮説作成のためのフレームワークが非常に有用だと実感しました。普段は、「〜なんじゃないかな」「このデータだとこんな感じかな?」と何気なく仮説を立てることもありますが、フレームワークを用いることで、考えるべき側面を網羅的に整理でき、より多くの仮説を効率よく導き出せると感じました。もちろん、一般的な枠組み(例:3Cや4P)以外の見方が必要な場合もあり、その都度、自分で検討することが大切だと再認識しました。 過去の仮説はどうだった? 過去の業務では、なんとなく仮説を立てたり、仮説を持たずに作業を進めたりすることがあったと感じています。そのため、今後は以下の点を意識して取り組んでいきたいと思います。 ・常にフレームワークを利用して仮説を作り出すように心がける。 ・過去に読んだマーケティングの書籍などを再読し、その知見を実際に活用する。 ・仕事だけでなく、日常生活においても仮説を立て、検証するプロセスを積極的に取り入れる。 検証プロセスは有効? また、データを単に集めたりビジュアル化するだけでなく、意図的に仮説を立て検証するプロセスを業務に取り入れることで、より論理的なアプローチができると考えています。今後、講義で学んだ具体的な方法をもとに、自主学習を進めながら、疑問点や気になる点を解消していきたいと思います。 新生活どう迎える? なお、来週は新しい仕事に就くための引っ越し作業が重なり、少し慌ただしくなりそうですが、引き続き学習に力を入れていく所存です。

戦略思考入門

戦略の視点拡大で見える新たな道

広い視点で戦略を考えるには? 戦略を考える際には、自分の得意な視点に偏らないように、広い視点で考えることが重要です。特に、戦略を深く考えるためには、フレームワークを活用することが有効です。ただし、PEST、3C、SWOTの使い方の違いについてはまだ完全に理解が及んでいない部分があります。 フレームワークの活用事例は? フレームワークを理解する一環として、これまで担当してきた社内サステナビリティコミュニケーションのケースを考えてみます。SWOT分析では、OT(PEST分析)を行った後に、3C分析を活用しました。この取り組みの目的は、従業員のサステナビリティに対する理解を促進し、行動を変容させることです。 SWOT分析の結果、以下の点が明らかになりました。 - S: 研修やeラーニングが実施されており、従業員の理解度は概ね高い。 - W: しかし、これらは研修やeラーニングの手段に留まっており、従業員の半数に情報が行き渡らず、行動変容には繋がっていません。また、SDGsの認知度も低い状況です。 - O: 推測としては、オウンドメディアの活用が増加し、さらに共創活動が加速する可能性があります。 - T: 同時に、心理的安全性の高い企業が増えることが脅威として考えられます。 チームでの戦略策定の重要性 実際の業務においては、より具体的かつ深い分析が必要です。一人の視点に頼るのではなく、チームの視点や意見を積極的に取り入れ、妥当な戦略を策定していくことが大切だと考えています。行動として、戦略策定を4月より開始しています。

クリティカルシンキング入門

論理的思考を深める3つの視点

論理的思考を深めるには? あなたの振り返りでは、論理的思考の重要性やクリティカル・シンキングの具体的な方法に対する深い理解が見られます。「3つの視」といった概念を自身の反省に結びつけている点は特に良いと感じました。しかし、具体的な例やケーススタディを用いることで、さらに視点を深めることができるでしょう。 具体例を試してみよう 具体的な思考を深めるためには、「3つの視」の概念を具体的な場面で試してみることが有効です。具体例を挙げながら視点や視野をどう変えられるか考えてみてください。また、ロジックツリーを活用する際には、具体から抽象へのキャッチボールをどう効果的に行えるかも意識してみましょう。 さらに、実際の事例やケースを用いながら論理的思考の訓練を継続的に行うことが重要です。継続的な実践を心掛けていきましょう。 毎日の場面でどう活かす? これらのスキルは、長距離型の企画書作成やプレゼンテーション、来期の目標設定、チームの目標設定、転職活動といった場面だけでなく、短距離型の商談や会議での発言、メールの文章作成、日々のコミュニケーションにおいても活用できます。どの業界や会社においても通用するスキルであると考えています。 自分に問いかける習慣を また、「それって本当?他にはあるのか?」と考える習慣を身につけることも重要です。具体的には、この二週間は思ったことをすぐに口にしないように心掛け、その後、フレームワークについて学ぶと良いでしょう。フレームワークに関する本を読むことに加え、実際に実践してみることが大切です。

マーケティング入門

売れる理由は5要素の秘訣

売れる理由は何? 売れる理由を考える際は、「これだけで売れる」という一点に頼るだけでなく、さまざまな視点から売れる理由や売れない理由を検討することが大切だと感じました。その中でも、無限に考え続けるのではなく、「比較優位性」「適合性」「わかりやすさ」「試用可能性」「可視性」という5つの要素に絞ることが効果的だと思います。特に「わかりやすさ」と「可視性」については、一歩引いて全体を見直さないと、顧客のニーズを見失う可能性があると気づきました。整理した考えを知人に意見を聞くなどして、効果的にブラッシュアップすることも有意義でした。 誰の課題を解決? 一方、自社サービス(BtoB)が具体的にどのような企業の、どのような課題を解決するのかという点に関しては、自身の中で十分なイメージを持てていなかったと反省しています。今週の例では、「インスタント食品」という大まかな印象は伝えられるものの、具体的に解決すべき課題が明確になっていないため、市場に十分に訴求できていないと感じました。サービス名から直感的にどのような商品かイメージしづらいため、サービス名を見直すことで上記5つの要素を再評価できるのではないかと思いました。 サービス名は適切? また、サービス名から実際に商品やサービスのイメージが湧き、使ってみたいと感じてもらえるかどうかを確認するため、可能であれば経営者の知人など、ターゲットに近い層に意見を求めるのが良いでしょう。その前に、顧客を分類し、絞り込みを行った上で、一致する層の方々にアポイントを取ることが重要だと考えています。

データ・アナリティクス入門

実例でひも解く市場戦略のヒント

市場分析はどうする? 市場分析においては、従来の市場重視だけでなく、3Cおよび4P分析の重要性を実感しました。特に、競合の存在に対する意識が不足していた点を改める必要があると感じています。また、プロモーション戦略については、各校舎ごとに異なる方式を採用すべきだと納得しました。 データ収集はどう? データ収集に関しては、まず公開されているデータを積極的に探すことが基本であると再認識しました。官公庁のサイト、新聞、経済誌など、どのようなデータが存在するかを日常的に意識することが大切です。 現状認識はどう? まずは現状を確認し、当たり前のことでもしっかりと言語化することで、チーム全体で共通認識を持つことが重要です。その上で、原因となる事象を特定し、具体的な解決策の検討に取り組む流れが効果的であると感じました。 仮説検証は? さらに、仮説を立てた上でユーザーアンケートをデザインする際は、因数分解やクロス集計が可能な形を意識することが求められます。フレームワークを活用し、実際に分析とその言語化を進めることで、より具体的な解決策に近づけると考えます。 チーム共有は? また、アンケートデザインにおいては、チーム内で考え方や方針を共有し、どのような分析が可能か、そして実際にどのようなレポートを作成するかを仮で作成して検証するプロセスが重要です。望ましい状態と現状を整理し、効果的なフレームワークを見つけて習得すること、さらにはその内容を資料にまとめ、教えられるようにすることも大切だと実感しました。

データ・アナリティクス入門

分析を活用した価格設定の秘密

分析の基本とは? 分析とは、比較を通じて事象を理解することです。分析には、数値を基にした定量分析と、事象の背景や流れを検討する定性分析があります。これらの分析は、対象となる要素を分解し、様々な視点から詳細に検討する作業です。重要なのは、データを扱う際に注意が必要であり、異なるものを比較しないようにすることです。すなわち、「Apple to Orange」ではなく、「Apple to Apple」を意識し、見えているものだけでなく、見えていないものも視野に入れながら比較することが求められます。 リゾートホテルの価格戦略 例えば、リゾートホテルにおける宿泊価格の変動を分析する場合、グループ内の直営16施設の過去10年間の売上データを活用することが考えられます。また、旅行サイトの口コミも分析の参考にできます。これらのデータは、特に需要が高まる週末や祝日の売上を最大化するための社内向け資料として活用されます。近年の旅行者数の増加に伴い、これらの変化をデータとして捉えることで、より効果的な意思決定が可能となります。 ダイナミックプライシングの活用 具体的な販売戦略としては、客室は56日前から販売設定されており、分析した資料を元に販売時の価格を提案します。予約の受注数と周辺ホテルの料金を毎週比較し、価格設定の見直しを行います。また、過去10年間の売上データを基に、ダイナミックプライシングを活用して売上が最大化できたかどうかを分析します。このようにして、データ分析を通じて戦略的な価格設定を行うことで、売上の最大化を目指します。

「具体 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right