クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

クリティカルシンキング入門

図解と手書きで伝える力

論理整理のコツは? 構造化して論理を整理することで、内容が伝わりやすくなると実感しました。理由をいくつも並べたり、同じような理由が重なったりすると、どうしても重複や偏りに気づかずにしまいます。構造を意識することで、それらに気づく助けになると感じています。 図解って効果ある? 日頃、この部分が非常に苦手だと感じているため、あらゆる場面で意識して取り組む必要があると考えています。最初は図解を利用して、手間をかけながらも整理してみることが大切だと思います。慣れてくれば頭の中で整理できるようになりたいですが、誤った癖を作らないよう注意が必要です。 手書きメモで整理? また、手書きでメモを作成し、具体化しながら理由を並べ整理することができれば理想的です。特に、社外とのコミュニケーションや提案の際に、理由がばらばらにならないよう、仲間と十分に意見をすり合わせる場面で活用したいと考えています。

クリティカルシンキング入門

MECEで考える提案資料作成のコツ

MECEとは何か? MECEというロジカルシンキングの基本を学びました。この方法は、必要な要素を網羅しつつ重複しないようにする考え方です。そのために、層別分解、変数分解、プロセス分解という3つのパターンがあることを理解しました。 なぜMECEが重要? 営業面で提案資料を作成する際に、MECEを意識することで考慮漏れの無い提案ができ、出直しや再考を防ぎ、より効果的な資料作成に役立てられると考えています。また、トラブル発生時の対策報告でも、この考え方は活かせると思います。 結論にどう導く? これまでは結論ありきで、その根拠のために分析を行っていました。しかし、このプロセスを逆転させて考える必要があると感じています。同じ数字でも視点を変えて分解すれば、見え方が変わるということを意識し、分析結果を複数に増やしていくことで、より説得力のある結論に繋げていきたいと思います。

クリティカルシンキング入門

実践力が即戦力に!ケーススタディの効果絶大

業務に活かせる実践的学習とは? 学習内容が非常に実践的で、即座に業務に応用できる点が素晴らしかったです。特に、ケーススタディを通じた学びが深く、現実のビジネスシーンにおいても非常に有益であると感じました。 難しい点はどのように克服する? また、講義の進行がスムーズでわかりやすく、講師の方々の説明も丁寧で具体的でした。疑問点に対するフォローも充実しており、安心して学習を進めることができました。 他の学習者とどう交流する? さらに、同じように学ぶ仲間とのディスカッションや交流も刺激的で、新たな視点を得ることができました。オンラインという特性を活かして、さまざまな地域から参加している方々と意見交換できる点も魅力的でした。 総じて、このプログラムを通じて自身のスキルアップだけでなく、新たな人脈を築くことができ、大変満足しています。これからも継続的に学び続けたいと思います。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。

デザイン思考入門

生成AIとデザイン思考で切り開く挑戦

生成AIの使い方は? 生成AIを効果的に使いこなしている皆さんの姿に驚きました。また、提案されたアイデアが多角的な視点から考えられており、誰も同じコンセプトで作成していなかった点が印象的でした。自分もどの部分でユニークな回答を生み出せたのかを見直し、今後の取り組みに活かしていきたいと考えています。 課題解決の流れは? デザイン思考入門で学んだ共感、課題定義、発送、試作の手法を総務業務の改善活動に積極的に取り入れていきます。まずは、様々なイベントに積極的に顔を出して情報を収集し、皆さんが抱える問題点を洗い出します。その中で特に意見が多かった項目をもとに課題定義を行い、場合によっては実際の現場の声を反映したペルソナ作成も検討しますが、生成AIを活用することで自分では捉えきれない視点も網羅できるため、その力も借りながら進めていくつもりです。

データ・アナリティクス入門

小さな気づきが大きな成長を生む

どう原因を見極める? 課題解決においては、まず対象の業務プロセスを細分化し、どの段階が問題の原因となっているかを明確にすることが重要です。自分の感覚だけで原因を決定するのではなく、有識者へのヒアリングなどを通じてプロセス全体を整理し、どの部分に注力するかを正しく見極める必要があります。どのプロセスを改善すれば、課題解決に大きな効果が期待できるかをしっかり検討することが求められます。 何をテストするの? また、改善案の効果を正確に判断するためには、A/Bテストの導入が有効です。改善前後の両方のパターンを同じ条件下でランダムにテストすることで、施策の効果を客観的に評価できます。さらに、システム導入のトライアルにおいては、現行システムと新システムを同時に使用することで、正確な効果測定が可能となるよう進めることが望まれます。

マーケティング入門

現場で磨く!顧客視点の極意

体験で何が学べた? 自らが同じ環境に身を置くことで、真のニーズを引き出すという学びがありました。その経験から、自分が自然に心掛けていた考え方が正しいと再確認できた一方、ペインをゲインに変える視点が欠けていたことに気づかされました。 何に注力すべき? 顧客のニーズを把握するため、カスタマージャーニーを丁寧に実施し、これまで見落としていたペインポイントを洗い出すことの重要性を感じています。その上で、見つけたゲインポイントに基づいて、今後どの方向に力を注ぐべきかを提言していきたいと思います。 どのデータが鍵? また、マーケティングでは裏付けとなる指標やデータを収集し、分析を行うことが不可欠です。これらの情報をどのように効果的に収集しているのか、その方法と手法についてさらに学んでいきたいと考えています。

データ・アナリティクス入門

仮説が紡ぐ学びの物語

フレームワーク利用は効果的? フレームワークを活用することで、単純な情報だけでは十分に特定できない要素が増えてくる中、考えを整理するための有益な補助となると実感しました。無闇に考えを巡らせるのではなく、分析の目的を明確にすることが何より大切だと改めて感じました。 仮説検証の秘訣は? また、分析におけるストーリー作りが、仮説の検証に非常に役立つことも理解できました。仕事においても、成果という仮説を検証するプロセスと重なる部分があり、同じ仕組みが働いているように思えました。一方で、仮説の幅を広げるためには、明確な目標設定が不可欠であるという点も改めて認識しました。

「同じ × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right