デザイン思考入門

ユーザー目線で築くデザイン思考の歩み

人間中心設計はどう? デザイン思考の中心にある人間中心設計の考え方が特に印象に残りました。プロダクトの利用者は当然ユーザーであるべきですが、実際にはその視点が薄れることもあると感じました。徹底的にユーザー目線に立つという意識がデザイン思考の出発点であると改めて認識し、今後の学習においてもこの点を大切にしていきたいと思います。 市民ニーズは伝わる? 行政運営に携わる中で、市民のニーズを重視することは当たり前ですが、現実には十分に実現できていない部分もあります。業務の棚卸しや政策立案において、デザイン思考は非常に有効だと感じています。机上の理論だけの施策ではなく、協働のプロセスを重ねることで、本当に求められる施策形成へと結びつけたいと考えています。 対話で何が変わる? また、住民や事業者、そして職員同士の対話がすべての基盤であると思います。対話をしっかり行えば、自然とその後のプロセスもうまく進むでしょう。まずは、誰もが忌憚なく意見を交わせる、敷居の低い対話の場づくりに注力していきたいです。

クリティカルシンキング入門

視覚的要素で引き込むスライド作成のコツ

スライドの表現はどう? 視覚的な要素を意識したスライド作成では、色やフォントが持つメッセージ性を効果的に活用することが重要です。色は多用せず、引き算の考え方でデザインをまとめると良いでしょう。文章やスライドの内容は、一つのメッセージに焦点を当て、読み手に合わせて適宜変更することを心がけます。 テンプレートはどう? また、パワーポイントの作成時には、いきなり文章を書き出すのではなく、会社のテンプレートがある場合にはそれを利用するのが賢明です。他の人が後で編集しやすいように、資料を作成する際にはコピーされることを前提としておく必要があります。スペースキーを使用して改行をしないように注意しましょう。 時間管理は万全? パワーポイントの作成過程では、いきなり構成し始めるのではなく、まず文章から始めることをお勧めします。作成時には集中して一気に仕上げられるように、まとまった時間を確保することが効果的です。作業に専念するために、Teamsの通知をオフにし、タイマーを使って時間を管理すると良いでしょう。

戦略思考入門

戦略で切り拓く自分だけの未来

戦略と戦術の違いは? 戦略と戦術は明確に異なります。戦略は、どの行動を採用するか、または採用しないかといった選択を行うことで独自性を生み出すものです。広い視野で物事を見渡すことが、最速かつ最も効果的にゴールに到達するための基本となります。また、この考え方は、業務だけでなく日常生活においても応用できる点が魅力です。 目標はどう決める? 目標を明確に設定したうえで、どの行動を採用するかの選択は、様々なプロジェクトを担当する際に重要なポイントとなります。すぐに行動に移すのではなく、まずはしっかりと戦略を立てることによって、自身の独自性を強化し、より効果的な進行が可能になると考えています。 見える化で分かる? さらに、言葉だけで説明するのではなく、ホワイトボードやノートなどを利用して全体像を見える化することで、個人やチーム全体で理解を深めることができます。そこから、具体的に誰がどのタイミングでどのような役割を果たすのかを話し合いながら進めると、プロジェクトを円滑に推進することができるでしょう。

アカウンティング入門

わかりやす会計が描く未来

説明はどう伝わる? 初回の講義冒頭で、「アカウンティングは人に分かりやすく説明されるものであり、決して難解で複雑なものではない」という話が非常に印象に残りました。世界中の企業で利用されている以上、誰にとっても明確で理解しやすいはずだと再認識でき、これまで漠然と感じていた取っつきにくさが和らいだように思います。 顧客情報をどう活かす? また、社内で新たなプロジェクトに参加する際、顧客の基本情報をリサーチするために今回の学びを活かしたいと考えています。顧客企業の基本情報や業界背景情報の収集に加え、財務データを正確に読み解いて自分なりの考察を持つことが重要だと思います。 財務分析は何が鍵? さらに、本コースの学びと平行して、クライアント企業の公開情報から直近の財務データを取り出し分析作業を進める予定です。さまざまな業界の企業データを比較し、業界ごとの違いや特徴を検証することで、より深い理解を得たいと思います。

データ・アナリティクス入門

データ分析で見つける!問題解決への道

データ分析はどう始める? 分析は、比較から始まります。問題の定義やデータ分析の目的を明確にし、データの切り口や分析方法、データの効果的な見せ方、さらには仮説を立てる際に有効なビジネスフレームワークを学びました。 手続きの問題はどう捉える? 手続きのデジタル化率を向上させるためのプロモーション施策を考えることを目指し、どこに問題があるのか、どのように解決するのかを段階的に考えていきます。特に、どの手続きでデジタル化の進行が遅れているのかを把握し、その手続きを行った人のデータを深掘りします。 分析で何が分かる? 具体的なステップとしては、最初に手続きが紙ベースかデジタルかを確認し、次に属性データや過去にデジタル手続きを利用した履歴で分類します。それらのデータを用いて、なぜその手続きが利用されたのか、またはなぜ利用されなかったのかを分析することで、より深い理解や示唆を得ることができるでしょう。

アカウンティング入門

身近なビジネスを見てPL・BSを学ぼう!

PLとBSはどう反映される? ビジネスモデルが損益計算書(PL)や貸借対照表(BS)にどのように反映されるかを、実例を通じて具体的に理解することができました。例えば、企業が従業員に支払う人件費が原価として計上されることは、その企業がどのような価値を提供し、どのようにして売上を得ているかを考える良い事例です。 日常のビジネスはどう見る? 日常生活で目にしたり利用したりする飲食店や鉄道会社、金融機関のビジネスモデルを理解しようと思います。それらを分かりやすく整理し、家族にも伝えられるようになればより深い理解につながると考えています。 利益はどう生み出す? まずは一週間の中で自分の周りにあるビジネスをリストアップしてみます。それを事業別に分類し、どのように利益を生み出しているかを分析します。そして、整理した情報を三週間後の週末に子どもたちにクイズ形式で伝えようと思います。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

クリティカルシンキング入門

振り返りで見つく、新たな学びの扉

ビジュアルで魅せるには? アイキャッチなどのビジュアル要素を活用することで、文章や提案書をただの情報羅列ではなく、読む人の興味を引くものにできると学びました。こうした技法を知らないと、どの部分をどのように工夫すれば見やすくなるか分からず、結果として読み手に退屈な印象を与えてしまうリスクがあると感じています。また、技術に精通している方からは、工夫が足りないと評価されるのではないかという不安もあります。 メールの工夫はどう? 毎日のメール文面作成においては、最近AIを利用することで、最低でも60点以上の出来栄えが得られていると実感しています。しかし、最終的には私自身がタイトルや内容に目を通し、読者の興味を惹く配慮がされているかをしっかり確認する必要があると学びました。同時に、メールを送る目的や狙いを明確にすることの大切さを改めて実感しています。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

「人 × 利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right