クリティカルシンキング入門

図で読み解くデータの真実

視覚化のコツは何? 今回の講座を通じて、視覚的に分かりやすい図表の作成や、元データを複数の視点で分解してグラフ化する手法を学びました。情報を可視化することで、データの本質に迫ることができ、分析の精度が高まる点が非常に印象的でした。 分解視点はどう活かす? また、データの分解方法として、When(時間)、WHO(人)、HOW(手段)の視点を活用し、仮説を立てながらデータを読み解くアプローチは、理論と実践をうまく結びつけると感じました。こうした手法により、伝えたい内容を論理的に整理し、より明確に説明できるようになると思います。 情報分解の秘訣は? さらに、MECEの考え方を用いて情報を漏れなく、ダブりなく分解する技術についても学びました。層別分解、変数分解、プロセス分解といった具体的な切り口を通して、第三者にも分析の背景や意図を的確に伝える方法を身につけることができました。 課題抽出はどう確認? 最後に、アンケート結果や経費使用の分析を通じて、課題の抽出と適正な施策検討につなげる事例は、実務における分析の重要性を改めて認識させられる内容でした。自分自身でデータを作成する際や、他者のデータを検討する際に、適切な分解と背景の説明が説得力を高めるポイントであると感じました。

データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

戦略思考入門

戦略思考×DXで未来を描く

戦略思考の価値は? 戦略思考とは、複雑な状況をできるだけシンプルに整理し、わかりやすく説明できる能力であると感じました。仕事に限らず、プライベートでもこの思考方法を取り入れることで、自然とその考え方が身につくのではないかと思います。 技術活用の意義は? また、参加者の方が紹介されていた、生成AIやDXツールを利用して「捨てる」理由を明確に示したり、シナリオプランニングの精度を高めるという事例は非常に印象的でした。私自身もこれらの方法を実践してみたいと感じています。 部署の役割を整理するには? 現在、私が担当している部署では、業務範囲が曖昧になりがちなため、部署本来の役割や業務内容を明確にし、具体的なアクションプランに落とし込む必要があります。そのため、プラン策定に向けて以下の点を進めたいと考えています。 今後の具体的な取り組みは? まず、これまでの成果と課題を整理するために、各担当者へのヒアリングを実施します。次に、他部署との役割の違いを明確にし、自部署に影響を与える外部環境や社内の変化についても分析します。そして、あるべき姿を明確に設定し、言語化することを目指します。最後に、部内の各チームごとに、それぞれの役割と取り組むべき課題を整理していきたいと思います。

アカウンティング入門

数字が語るリアルな業務体験

利益以外の費用は何がわかる? 売上総利益や営業利益は業務で実感できたものの、それ以外の費用について改めて知ることで、会社の動向を把握する上で大変学びになりました。PL(損益計算書)と聞くと、数字の羅列で無機質な印象がありましたが、具体的な業務事例から学ぶことで、様々な業種の数字から読み解ける点が多いと実感し、さらに掘り下げていきたいという意欲が湧いてきました。 地域別の業績はどう? まずは、自身の業務で回収している各販売会社のPLを、地域ごとに改めて確認してみようと思います。地域ごとに売れ筋商品や人件費の割合が異なるはずですから、売上総利益や販管費の比率を見ることで、事業の得意・不得意を客観的に把握できると考えています。 海外地域の課題は? また、日本の同業種の利益率を踏まえ、各海外地域の数字を確認することで、国ごとの課題を抽出できるよう、過去の業績と活動実績を振り返って分析してみたいと思います。国内では発生しない費用など、これまで気づかなかった点も発見できる可能性があります。 経費用語は何が必要? さらに、基礎的な用語が十分に理解できていないと感じたため、現業の活動にかかる各費用がどの費目に分類されるのかを改めて確認し、しっかり覚えていこうと思います。

戦略思考入門

仮説で切り開くDX推進の道

情報はどう補う? 総合演習を通じて感じたことは、設問の情報だけでは答えられない問題がいくつかあり、不足している情報を取得する必要があるということです。それでも情報が不足する場合があり、その際はある程度仮説を立てて物事を考える必要があります。この点は今回の事例に限らず、実際の業務でも同様だと思いました。100%の情報が揃うことはまずなく、不足する情報は自分で調査をし、または人から聞いて知識を埋めなければならないと感じました。それでもなお未知の部分は、仮説を立てて結論を導き出す力が求められます。 新部署で挑戦する? 10月からDX推進部に異動しました。ここでは、従来の定型業務がなく、正解のない課題に取り組む必要があります。新しいプロジェクトの一つひとつにおいて、今回の学びを活かせると確信しています。特に、フレームワークを活用した現状の整理や仮説思考が重要です。 e-learningで学ぶ? まずは、ある程度答えがある事柄、つまり前提知識については、会社のe-learningを活用して知識を深めたいと思います。そして、新しいことの効果を検証する際には必ず仮説思考が必要であり、100点満点ではないにせよ、今ある情報をもとに効果を試算することに挑戦していきたいです。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

デザイン思考入門

共感プロセスで見えた本質

デザイン思考はどう働く? 私は、自社の業務効率や生産性を向上させるために、デザイン思考のアプローチを取り入れようとしています。施策を検討する際、共感は非常に重要なステップであり、実際、経験や知識のない分野でも観察やヒアリングを通じてエンドユーザーの立場から業務を理解することが、より適切な対策を生み出す基盤になると考えています。 急ぎすぎるリスクは何? ただし、私の事例では、エンドユーザーが既に理解している業務の振り返りにとどまってしまい、次の具体的な検討段階へ早く進んでしまう危険性を感じています。そこで、共感プロセスをしっかり進めるためには、エンドユーザー自身にも共感の重要性を認識してもらい、具体的なメリット(例えば、既存業務の棚卸しなど)を実感させる工夫が必要だと思いました。 なぜ事前準備が必要? また、観察やヒアリングを通じてユーザーの深層ニーズや課題を把握することは、デザイン思考の基盤を築くうえで欠かせないプロセスです。しかし、単に行動を追うだけであれば表面的な理解にとどまる危険があるため、事前の情報収集と明確な問いの設定が重要であると考えています。今後のコース受講を通じて、その下準備の進め方についてさらにヒントを得たいと思います。

マーケティング入門

強みを再発見した瞬間

強みはどう活かす? ある事例を通して、自社の強みをいかに活かし、顧客が潜在的に求めるものを的確に捉え、製品として届ける一連の流れを構築することが、売れる商品の基盤になっていると考えます。また、優れた商品が届くだけでなく、迅速かつ高品質に提供するだけでなく、店舗のみならずオンラインチャネルを活用し、親しみやすいネーミングの商品を展開することで、購買意欲を刺激していると感じました。 制御すべき領域は? 強みや既存のアセットを再認識することの大切さを改めて実感します。課題や弱みに目が行きがちですが、どの領域を自社でしっかりとコントロールすべきかを見極めることが不可欠です。アセットが存在しない部分については、創出する努力や、パートナーシップを通じたサービスの協業も重要ですが、最終的には自社のコントロール下にある部分に注力する必要があると考えます。 具体策は何が鍵? 具体的には、自社のアセットである要素を言語化し、その解像度を高めること、社内の他部署との連携を深め信頼関係を構築すること、そして、ネーミングなどのひらめきが生まれる場を設計することが求められます。これらの取り組みが、貴重な市場での競争力の源泉となると感じました。

デザイン思考入門

体験から生まれる驚きと気づき

体験から何を感じた? 実際に体験することで、ユーザーの気持ちに気づく大切さを学びました。調査実施時、直接体験できない場合でも、身近な人々の行動を想像し、その視点から課題やニーズを探ることが重要であると感じています。さらに、可能な範囲でインタビューを実施し、具体的な問題点や求められているものを丁寧に理解するよう心がけています。 体験が生む共感とは? また、実際に体験しなければ気づけない部分が多いことを改めて実感しました。ユーザーが体験している状況を自らも体験することで、共感の場が生まれ、より深くユーザーの視点を理解できると感じています。 商品開発のヒントは? 一例として、キリンの第3のビール『本麒麟』の開発プロセスが紹介されました。まず定量調査で過去の失敗を洗い出し、その結果を踏まえて定性調査を実施することで、ユーザーニーズ(インサイト)を具体的に把握。このプロセスは、社内メンバーを説得する際の根拠となり、商品開発への示唆にもつながると学びました。 体験で共感深まる? さらに、バックパックに関する事例では、ユーザーと同じ体験をすることで得られた気づきが、より深い共感へと結びついたことも印象に残りました。

データ・アナリティクス入門

業界事例で実感!仮説検証術

どうして分解が有効? 様々な要素に分解して仮説を組み立て、データを意識した点はとても良いと思います。具体的な業界事例に当てはめて考えることで、理解がさらに深まるでしょう。 具体例はどう映る? 仮説を立てる際には、具体的な業界やビジネスシーンの例を考えると、思考がより深まります。また、データを検証する際にどのようなツールや手法を用いると効果的かを検討することも大切です。 実践で活かすには? 実際のビジネス状況で仮説検証をどう活用するかを考え、具体的に練習することが求められます。引き続き、さまざまな角度から課題を検討してみましょう。 なぜ幅広い視野? 課題は狭い視野だけでなく、幅広い角度で網羅的に考える必要があります。そうしないと、本当の課題を見落としてしまう恐れがあるため、どのようなデータで検証できるかもしっかりと検討することが重要です。 共有はどう役立つ? 自分の考えに固執せず、要素の重要性を周囲と共有しながら多角的に検討していくことが必要です。そして、どのように検証すべきか、またどの項目を指標として設定すべきかを同時に整理していくことが求められていると感じました。

「事例 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right