データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

ナノ単科で見つける問題解決の鍵

どう進める? 問題解決のプロセスでは、ステップごとに考慮し、解決の基準を言語化し、数値化して、関係者内で合意を得ることが重要です。具体的には、問題の明確化(What)、問題箇所の特定(Where)、原因の分析(Why)、施策の立案(How)という流れで進める必要があります。あるべき姿と現状のギャップを定量化することも求められます。このギャップには、正しい状態に戻すための問題解決と、ありたい姿に到達するための問題解決の2種類があります。 どう区別する? また、MECE(もれなくダブりなく)に基づいた分け方での問題の区別が重要です。施策の検討においては、ロジックツリーを用い、施策案を作成し、ファクトに基づく評価基準で絞り込むことが必要です。さらに、複数の切り口を検討する準備をすることが大切です。 分析はどう? 定量分析には5つの視点があります。具体的には「インパクト(全体への影響度合い)」、「ギャップ(目標との比較)」、「トレンド(時間軸での把握)」、「ばらつき(集中、均一)」、「パターン(外れ値や変曲点の活用)」があります。特に外れ値については、積極的にビジネスに活用する視点が新しい考え方です。 数値はどう見る? 案①「正しい状態に戻すための問題解決」では、年度目標未達が具体的な問題であり、KGI(人数・収入・営業利益)やKPI(Web流入数、CVR、CTR)が定量化されています。やるべきことは、販売チャネル別の数値把握、変数分解の可視化、定量分析の5つの視点で再検証を行うことです。具体的には、販売チャネル別の人数・収入・利益を再検証し、優先順位を設計し、施策を可視化します。 組織はどう整える? 案②「ありたい姿に到達するための問題解決」では、来年度の組織編制が具体的な問題として挙げられています。計画人員やグループ数が具体的に定量化されており、現状の可視化、中長期的なトレンド把握、目標設定が必要です。具体的には、各課の強みや啓発点の洗い出しを行い、組織の現状の業務が将来の目標に向けて十分であるかを評価し、不足もしくは不要な業務を見定めます。 まとめはどうする? このように、問題解決のステップとMECEなどの手法を用いて、具体的な解決策を導き出すためには、論理的で整理されたアプローチが不可欠です。

クリティカルシンキング入門

問いが未来を拓く学びの一歩

課題の出発点は? 仕事で求められる課題に取り組むには、まず「問い」を明確にすることが大切です。問いがはっきりしていないと、自分だけでなく関係者全員の考えの方向性が揃わず、答えを見つけるのが難しくなります。また、問いが大きすぎると、思考が広がりすぎてしまうため、適切に絞り込む必要があります。 課題の見方は? 問いを明確にするためには、まず課題そのものを正しく把握することが求められます。直感的なイメージだけでは、思い込みや偏った視点が働くことがあるため、利用者、経営者、担当者、競合者、上司、部下など、さまざまな具体的視点から課題を見ると、新たな糸口が見つかりやすくなります。さらに、関係するデータをもれなく、ダブりなく分析することも、新たな視点に繋がります。 答えは見えてる? その結果、たとえ明確な像が浮かばなくても、問題に対して「解」がなかったという答えが得られる場合もあります。問いに取り組む際には、横道にそれず、関係者全体の時間を無駄にしないよう、最初に示した方向性に沿って答えを求めることが重要です。 事例から何学ぶ? 具体的な事例として、郵送検診の受診者数改善の取り組みを考えます。これまでは、受診者が一般に理解しやすい案内文を作成するため、他の医療機関の文例を参考にするのみで、データ分析に基づいたアプローチは行われていませんでした。今後は、受診者の年齢層や性別、その他の属性をしっかりと分析し、アプローチすべき対象を明確にした案内文を作成することが求められます。案内の方向性が定まった段階で、同僚からの意見も取り入れながらプランを練っていきます。 伝える工夫は? また、成果につながるアウトプットには、何を伝えたいのか目的を明確にし、主語や述語をはっきりさせることが重要です。説明の組み立ては、結論、目的、理由の順で整理し、状況分析には適切な表やグラフを利用するなど、情報の流れや優先順位にも配慮する必要があります。 今後の課題は? 最後に、「問い」を明確にすることの重要性や、その際の制約について具体的に理解できる文章になっている点は評価できます。さらに、問いを絞り込む具体的な手法や、異なる視点を活用した経験に基づく考察を加えることで、理解が一層深まることを期待しています。

クリティカルシンキング入門

MECE法で分かる問題解決の全貌と実践術

状況変化の把握方法とは? 状況の変化を把握するためには、「分ける」ことと「視覚化」がポイントとなります。「分ける」際には、複数の切り口を出し、機械的ではなく、目的に沿ってどのように分解すると状況が見えやすくなるかを考えることが重要です。この時に使える手法が「MECE(Mutually Exclusive, Collectively Exhaustive)法」であり、漏れなくダブりなく分けることを意識する必要があります。 MECE法の具体的な手法を学ぶ MECE法には次の3つの方法があります: 1. 層別分解:全体を定義して分ける(例:単価別、年代別) 2. 変数分解:一つの数字に対する変数を分ける(例:売上=客数×単価) 3. プロセス分解:分析対象の事象に関する全体のプロセスを考えて分ける(例:来店→注文→食事を運ぶ→食べる→会計→退店) 分解スキルの課題と対策 私はこれまでMECEの概念は知っていましたが、特に分け方がうまくできないと感じていました。上記の①〜③の手法を知ることができたのが一番の収穫でした。また、「他には?本当に?」と問いかけることで、分解の妥当性を検証することも重要だと感じました。 解約要因とその分析法は? 解約要因の分析: - 層別:子どもの年齢別、親の年齢別、世帯年収別、利用回数別、子どもの人数別 - 変数:アプリ利用状況=利用頻度×利用ゲーム数×1ゲームあたりの利用時間 - プロセス:契約→初期設定→初回利用→2回目利用→解約までの利用状況→解約→再契約 変数分解スキルを向上させるには? 変数分解のスキルアップ: 私は比較的容易に層別やプロセス分解の案は出せましたが、変数分解が特に苦手だと感じました。そのため、業務内外を問わず、日常生活で目にする数字を構成する変数が何かを1日に最低1つは考えていきたいと思います。具体例はすぐに思いつかなかったので、他の受講生の投稿や知人とのコミュニケーションを通じて課題を見つけていきたいと思います。 クリティカルシンキングを強化する クリティカルシンキングの基本姿勢: - 分解の切り口を検討する際に3つの視点を変えてみる。 - 出した結果に対して「なぜ」「本当に」「他には」という問いかけを行う。

マーケティング入門

受講生の声に未来のヒント

自社魅力をどう分析? 既存のリソースを活用して新しいビジネス展開に取り組む力が求められます。その際、まずは顧客視点から自社の魅力を分析し、ライバル企業を狭い業種ではなく、広い服飾業界全体として捉えることが大切です。 製品方針は決まった? また、時代の変化に対応した製品開発と、要件定義を明確にした上での開発方針の策定が不可欠です。これにより、より実用的な解決策が生まれる環境が整います。 潜在ニーズを発見? さらに、顧客自身が気づいていないニーズを掘り下げる手法として、行動観察や個人インタビューを実施することが有効です。潜在的なニーズを把握することで、本当に必要とされるサービスや製品の開発が可能になります。 製品名はどう選ぶ? 製品名については、親しみやすく覚えやすい上、製品との整合性がありユニークな語感を持つ名前が望ましいと考えます。名称がユーザーに与える印象も、製品の魅力を左右する重要な要素です。 顧客課題は明確? ペインポイント、つまりお金をかけてでも解決したい課題を見つけ出すことも重要です。単に「あればいいな」というニーズではなく、実際に顧客が投資を惜しまない課題に焦点をあて、機械に限らず工場全体の課題として捉え、顧客への訪問インタビューを通じて具体的な問題点を明らかにする必要があります。 数値で説得できる? 実際、課題の中には費用をかけて解決したいものと、そうでないものが混在しています。例えば、工場向けの大型機械の場合、金銭や時間、人手という具体的な数値で示される課題は、比較的解決に向けた投資が行いやすいですが、中小企業の場合、得られる利益を正確に算出するのが難しいこともあります。そのため、例えば古い機械を更新する際に新製品の処理速度が2倍になるという具体例を用い、1時間あたりの利益や4年間での費用回収シミュレーションを示すなど、数値で分かりやすく説明する工夫が求められます。 担当部門を再考? 最後に、製品名の決定については、どの部門が担当するかも再考の余地があります。従来は機械開発担当が決めるケースが多いですが、ユーザーと近い部門が名称選定に関わることで、よりユーザーに響く名前が付けられるのではないかと感じています。

データ・アナリティクス入門

プロセス分解で新発見!

プロセス分解で問題確認? 今回学んだ内容は、まず問題の原因を明らかにするために「プロセスに分解する」アプローチが有効であるという点です。複雑な現象を一連のステップに分けることで、どの段階で問題が発生しているのかを明確に把握することができます。 複数案提示で評価は? また、解決策の検討では、最初から一つの案に絞るのではなく、複数の選択肢を洗い出し、それぞれの根拠を整理して比較することが重要だと学びました。感覚ではなく客観的な理由に基づいて評価することで、納得性の高い意思決定が可能になります。 分析の4ステップとは? さらに、問題解決のフレームワークとして「What(何が問題か)」「Where(どこで起きているか)」「Why(なぜ起きているか)」「How(どう解決するか)」の4ステップを学習しました。この順序で考えることで、思考が整理され、問題に対して論理的にアプローチしやすくなります。 A/Bテストで検証は? また、A/Bテストの手法にも触れ、数値データに基づいて施策の効果を比較することで、主観に左右されない客観的な判断ができることも学びました。 業務改善はどこから? 実際の業務では、日々発生するトラブルや非効率なフローを「なんとなく不便」と感じるだけではなく、プロセスに分解して整理することで、どの部分に改善の余地があるのかを論理的に捉えることが可能になります。また、解決策を検討する際には、複数案を提示し、それぞれのメリット・デメリットを整理することで、チーム内での説得力や意思決定の自信にもつながります。 課題整理の習慣は? 今後は、まず業務上の課題をプロセスに分解して整理する習慣を身につけ、解決策を考えるときには最低でも2〜3案を提示し、それぞれの根拠を明確にすることを心がけます。また、「What → Where → Why → How」という順序を意識し、問題解決の思考を言語化することで、業務改善の効果測定もしっかりと行いたいと考えています。 提案力向上はどうする? こうした取り組みを通して、業務遂行力だけでなく、周囲とのコミュニケーションや提案力も向上させていきたいと思います。

データ・アナリティクス入門

Whereが導く新たな学び

解決のステップは? 問題解決の4つのステップを意識することで、課題解決に向けた取り組みがより効率的になると感じました。今後は、最も重要なポイントである「Where」を意識して分析に着手していきたいと思います。業務においては、あるべき姿と現状とのギャップを、定量的な指標で示すことが大変有効だと印象に残りました。 総評はどう考える? 総評として、問題解決のステップを意識し、効率的なアプローチを追求する姿勢は素晴らしいと感じます。また、定量的な分析の重要性を理解している点も非常に大切だと思います。今後は、具体例を交えた検証により、さらに深い理解が得られるでしょう。 手法とデータは? さらに思考を深めるための問いとして、以下の点を考えてみてください。 ・問題の「Where」を意識する際、具体的にはどのような手法を用いる予定ですか? ・業務での定量的分析を強化するために、どのようなデータが必要だと考えますか? 今回学んだポイントを、実務に具体的にどのように応用するかもじっくり考えてみてほしいと思います。頑張ってください。 理想と現実は? また、「あるべき姿」と「現状」のギャップについては、①正しい状態に戻すための問題解決と、②ありたい姿に到達するための問題解決があると認識しました。たとえば、以下のようなケースが想定されます. ・売上販売目標の場合  → 100%達成に届かない状況と、120%達成を目指す状況がある ・製品シェアの内訳の場合  → シェア80%を目指す場合と、シェア100%を目指す場合がある ・KPI Activityの場合  → 会社の指標を順守する場合と、それを大きく上回る目標を設定する場合がある 比較で見極める? さらに、分析にあたっては「分析とは比較なり」という考え方も大切です。具体的には、社内の数字の良い組織や競合他社と比較することで、現状とあるべき姿を明確にすることが重要です. また、あるべき姿と現状は、定性的な情報だけでなく、定量的な情報としても示すことが重要です。定性情報を定量化するために、数値によるスコア化(たとえば0、1、3など)を統一した条件で設定する手法も有効だと感じました。

データ・アナリティクス入門

視点が変わるデータ再発見のヒント

代表値は何を示す? データ分析においては、代表値や標準偏差といった基本指標を正しく理解し活用することが大変重要です。代表値には単純平均、加重平均、幾何平均、中央値などがあり、分析の目的に合わせた使い分けによって、より正確に傾向を読み取ることが可能となります。なお、実際の業務では最頻値を確認する場面もあるため、必要に応じて取り入れることが望ましいです。 集約手法の選び方は? また、データの集約方法にはさまざまな手法が存在し、誤った方法を用いると解釈や意思決定にズレが生じる可能性があります。そのため、常に目的に合ったアプローチを意識し、適切な手法を選択することが重要です。さらに、データのビジュアル化では、表現方法を工夫することで数字だけでは気づきにくい傾向を視覚的に捉えることができるため、状況に応じた最適な手法の選択が求められます。 ダッシュボードはどう使う? 施策の効果検証や日々の数値を確認するためのダッシュボードの作成・管理は、私の業務において大変重要な役割を担っています。これまでも代表値の使い分けやデータのビジュアル化について意識してきましたが、今回の学習を通じて基礎部分を再確認することができ、より適切な方法を用いる必要性を実感しました。特に、ダッシュボードは自分だけでなくチームのメンバーも活用するため、見せ方や解釈しやすさに細心の注意を払っています。 新たな平均法は? これまであまり使用してこなかった加重平均や幾何平均についても、現在扱っているデータに適用できる場面を意識的に探していきたいと考えています。既存のデータを例に、新たな視点での分析に取り組むことで、今まで見逃していた傾向やパターンを見出せる可能性があるため、さまざまな集約方法を試し、状況に合わせた最適な手法を選択できるよう努力したいと思います。 グラフ表現の意味は? ビジュアル化に関しては、単にグラフを選ぶのではなく、なぜその形式が適切なのかという明確な意図を持って活用することが大切です。さらに、同じ種類のグラフであっても、表示する項目数や内容によって可読性や伝達力が大きく変化するため、見せ方の工夫や調整にも十分な注意を払っています。

データ・アナリティクス入門

原因探索で拓く学びの未来

なぜプロセスを分解する? WEEK05「原因を探索する」では、まず一連のプロセスを分解して、各段階の転換(例:表示からクリック、クリックから体験レッスンへの導線)について整理する手法が紹介されていました。次に、問題の原因を探るために、企業戦略だけでなくそれ以外の要因も視野に入れる「対概念」の考え方が示され、幅広い視点での分析が求められていることが分かりました。 どうして要因に注目する? また、原因探索の際には、コストやスピード、意思疎通といった項目を重要度に基づいて重み付けし、最もインパクトのある要因に注力することが提案されています。さらに、少ない工数でかつリスクを抑えて改善を実施できるA/Bテストによるランダム化比較実験の実施方法も取り上げられ、実践的なアプローチとして評価されていました。加えて、ファネル分析により、ユーザーの行動プロセスを段階ごとに可視化し、どこでユーザーが離脱しているのかを実数と比率の両面から明らかにする手法も理解できました。 この事例はどう見る? 一方で、筆者自身が携わる自動車部品メーカーの事例では、採用ファネル管理表の作成が依頼されながらも、実際の元データが分散・乱雑な状態にある現状が語られていました。採用プロセスの各段階(応募者数、書類選考、面接、内定)の実数と割合を把握し、Excelやグラフ化ツールを使って直感的に状況を捉え、進捗管理やボトルネックの特定、採用プロセス全体の効率化と品質向上を目指すという目的が明確にされています。 なぜデータ整備が必要? そのため、まずは不要なデータの削除、重複データの統合、欠損データの処理、書式や値の統一など、元データの整備に着手する必要があります。加えて、着手前には「なぜ採用ファネル管理表が必要か」を改めて検討し、採用業務全体に問題がないか、他の角度から問題が発生していないかを確認する重要性が強調されていました。 分析の重要性は何? 今回の学びを通して、分析の基本プロセスである「what, where, why, how」を行き来しながら、各ステップにしっかり向き合うことの重要性を改めて認識することができました。

クリティカルシンキング入門

問いを立てる力で見抜く本質

クリティカルシンキングの核心とは? クリティカルシンキングで最も重要なのは「問い」に関する部分です。まず、目の前の出来事が「問い」なのかに気づくこと、認識することを大切にしたいです。 正しいイシューの特定方法 起こった事象に対して「問い」を立てるのか、それとも事象が起こる前の部分に「問い」を向けるのかによって、アウトプットは大きく変わります。これまで学んできた「考えること」「分解すること」が重要で、本質を見抜くことが求められます。 基本戦略やセオリー、本来正しいはずの理論や手法も、特定した「イシュー」が間違っていれば、悪手になることがあります。「イシュー」は常に変化するため、定点観測や分析を通じて追い続けることが必要です。局面ごとに最適な「イシュー」を導き出すことが求められます。 問いの共有が鍵となる 「イシュー」を特定するためには、「問い」から始め、問いを残し、問いを共有することが重要です。まず疑問文の形にすること、具体的に考え、過度に壮大にしないこと、一貫して「イシュー」を抑え続けることが求められます。 自身に対して「問い」を立てる際は、的外れな方向に進まないようにし、立ち止まることや「問いを残すこと」を意識したいです。 具体例を視覚化する効果とは? また、基本的な「き」に立ち返り、分解を行うことが大切です。具体例を視覚化したり、多角的に見るためには図などを用いることが有効です。 イシューを見極める場面とは? 「イシュー」を特定する場面としては、業務改善や組織・チームの改善、営業戦略の立案時、さらには自身のタイムマネジメント不足に対処する際があります。目の前の課題に気づき、問いを起こすことができるかどうか、常に気付きのレベルを高く保つ必要があります。そのためには学習や自己啓発を続け、引き出しを増やし続けることが重要です。具体的な行動や取り組み姿勢として、自らをそうした環境に置き続けることが必要です。 最後に、「イシュー」を特定する際に「問い」を持ち続けるために、自分にとって視覚化が重要だと感じました。ソフトウェアの活用などを通じてこれを実践していきたいと思います。

データ・アナリティクス入門

ロジカルなアプローチで課題を解決する秘訣

分解手法の課題とは? ロジックツリーについては知識があったが、「層別分解」や「変数分解」については理解が浅かった。このため、分解の方法に甘さがあったことに気づいた。MECE(漏れなくダブりなく)の原則に基づいて物事を分解しようとしていたが、ただ「その他」という項目を入れないようにしよう、「漏れなくダブりなくしよう」とするに留まり、実際には分析の観点で意味のある分解ができていなかった。「切り分けて意味のある分け方」ができていなかったのだ。 SFAでの運用改善策とは? マーケティングにおけるリードから商談に至るまでの顧客属性や営業活動履歴について分解し、SFA(営業支援ツール)上で選択肢を設定している。しかし、これがMECEであったとしても、分析の観点で後々良い結果に繋がらない選択肢を設定してしまっていたと気づかされた。ルールとして運用に乗せているため現場には混乱が生じがちだが、説明を通して理解を得て改善していきたい。 問題解決に向けたステップ SFAでの選択肢に関して直近の課題については、以下のステップをとる予定だ。 1. 最適なSFAでの活動結果の選択肢を調整するため、これまでに蓄積された様々な結果を分解手法を用いて再分解する。 2. 修正点についてチームメンバーと意見交換を重ね、最終的な決定を行う。 3. 現場の運用に支障が出ないよう、営業メンバーに理由を含めて通達し、理解を得る。 冷静な問題解決が大切 また、今後自分が行う企画については、「問題解決のために必要なステップ」である「what(何が問題か)」「where(どこに問題があるか)」「why(なぜ問題が起きているか)」「how(どうすればよいのか)」をきちんと踏まえ、目の前に見えて重要そうな課題や感情論に走らず、冷静かつ客観的に根拠のある分析を進めていきたい。企画時点での分析をきちんと行い、その結果をまた分析することでPDCAサイクルを回すことを徹底したい。 説得力を高めるには? 他メンバーに対して意見を出す際にも、上記の問題解決のステップを踏まえた説得力のある意見を出せるよう努め、納得を得られる形にしたい。

データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。

「分析 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right