データ・アナリティクス入門

理想と現実のギャップを埋める術

現状と理想は何だろう? 手元にあるデータを見つめると、まず「どうしようかな、何をすればいいかな」と迷いが生じました。しかし、まずは現状と理想を明確にし、そのギャップをどのように埋めるかを段階的に考えることが大切だと学びました。 ロジックの魅力はどう? そして、そのプロセスでロジックツリーという手法が登場します。従来、分析とはただ蓄積された情報から何かを取り出す作業だというイメージがありましたが、目標を設定し、漏れなく重複なく案を出し、その中から最適なものを選び出す手順があることに気づき、分析が思っていたよりもクリエイティブな作業であると実感しました。 経営企画室との連携は? また、これまで経営企画室の仕事について疑問を抱いていましたが、おそらく同様のプロセスで業務が進められているのだろうと感じました。今後、経営企画室と連携し株主総会などの準備に関わることになるため、直接データ分析や資料作りに携わらなくとも、同僚が分析した内容を参考にして学ぶことができると考えています。 実践で見えた効果は? さらに、日々の業務においても様々な問題や課題が発生しているため、今回学んだ手法を早速実践してみたいと思います。特に、安全衛生の分野では業務の範囲が定まっておらず、どこから手をつけるべきか迷っていたため、まず全体をMECEで洗い出し、その上でロジックツリーを用いて優先順位を整理する方法は、上司に説明する際にも非常に分かりやすいと感じました。 MECEの見直しはどう? しかし、自分では完璧なMECEになっていると思っていても、実際には抜けや漏れがあるかもしれません。MECEのチェックポイントについて、何か良い方法があるのか疑問に思います。

マーケティング入門

顧客の潜在ニーズを掘り起こす秘訣

成功のための顧客理解とは? 今週の事例では、顧客の隠れた真のニーズを深堀し、自社の強みを活かした製品を製造・販売することがヒット商品の成功要因だと実感しました。キャッチーなネーミングも販売を後押しする重要な要素です。また、最後の動画で「ビジネスチャンスのタネがなくなっている」や「今後AIが進化し、仕事がなくなるのでは?」といった懸念についても触れられていました。私も同様の懸念を抱いていましたが、動画を通じて、環境が変化すれば人々のニーズも変化し、そこにビジネスチャンスが生まれることを知りました。今後、顧客視点に立ち、敏感にニーズを察知し、深堀することの重要性を改めて感じました。 顧客のニーズをどう捉える? 「顧客自身が欲求に気付いていないため、単純な質問ではうまくいかない」という点は特に印象に残りました。実際にツール開発のための要望アンケートを提案していましたが、うまくいかない理由が手法の誤りにあると気付きました。顧客のニーズをヒアリングやアンケート、グループインタビューだけでなく、行動観察といった多角的な視点から捉えることが重要だと感じました。 次のステップで何をすべき? 今後取り組みたい具体的なアクションとしては、以下の点に重点を置きます。 - 常に「なぜそのように思うのか?」や「本当にそれが物事の本質なのか?」を考える癖をつける - 会社が提示する自社の強みについて、他にもないかを考える - 社内で議論し、新しい付加価値を顧客に提案する - 自社商品のカスタマージャーニーを実践する - 他業種のニーズを考え、自分自身で分析する癖をつける 以上のアクションを通じて、顧客視点を持ちつつ、自らの分析力を高めていきたいと思います。

データ・アナリティクス入門

現状整理で未来を切り拓く

状況整理はどうする? 問題解決の基本アプローチとして、まず「What」の段階で直面している状況を整理することが大切です。現状と「あるべき姿」とのギャップを把握し、単に「出願数が少ない」といった表面的な指摘に留まらず、より深い原因を明確にする必要があります。その際、状況の詳細な把握により「Where」を特定し、分析対象を絞り込むことで、無駄な検討範囲を排除していきます。 原因究明はどうする? また、次のステップとして、WhyやHowといった視点から問題の原因やその解決策にアプローチします。事業成長に直結する知財戦略の立案では、現状認識が不十分な段階で安易な解決策に至ってしまわないよう、各ステップを徹底的に深堀りすることが求められます。そうすることで、問題の核心に迫り、より的確な対策を打ち出すことが可能になります。 ロジックはどう活かす? さらに、ロジックツリーの活用により、問題を階層的かつ体系的に分解する手法も重要です。複数の視点から課題を整理し、解決策を絞り込む際には、「もれなく、ダブり無く(MECE)」を意識しながらも、実践では過度にならないよう適度に活用することがポイントとなります。多様な切り口を持つことで、問題の傾向や根本原因が見えにくくなるリスクを回避し、よりバランスの取れた分析が可能となります。 出願戦略はどう進む? 例えば、出願のためのアイディア発掘や出願計画においても、上記の手法を取り入れることで、各ステップの整理が不足している現状を改善する狙いがあります。現状のプロジェクトでは、主に主観が判断に影響しているため、まずは問題の状況整理に取り組み、ロジックツリーを活用した細分化を進めることが効果的だと感じています。

戦略思考入門

スキルを活かした業務改善の冒険

規模と範囲の違いは? 規模の経済性と範囲の経済性について学びました。規模の経済性は、現在の業務においても馴染み深いものであり、生産を拡大してコストを削減し、生産効率を向上させる手法です。一方で、範囲の経済性は複数の製品やサービスを同時に生産することでコストを低減する方法です。そのコストダウンのアプローチにはデメリットもあるため、目的に応じた選択が重要です。 演習で何を実感? また、最後の演習では、与えられた数値や資料を基に仮説を立て、その仮説の正しさを検証することから始めました。この過程で、粒を出すことまではできても、それを整理するためのフレームワークの活用がまだまだ不十分であると感じたため、分析能力の向上が必要だと痛感しました。 中長期戦略はどう? 今後の中長期的な視点としては、新規事業への挑戦時に学んだ内容を活用します。新たにBPO・BPR事業に参入する際には、3C分析、SWOT分析、PEST分析を活用し、目的に合わせた組織形成や業務設計を提案することを目指します。 課内改革は何から? 短期的には、課内の組織編制の検討に学んだフレームワークを活用します。現在の業務における課題を明確にし、その課題解決のために適切な組織形態を提案できるようにしていきます。 分析の始め方は? 分析においては、定量的なデータが多いほど効果的であるため、定性的なデータも可能な限り定量化していくところから開始します。また、定性的なデータにおいても進捗が確認できる指標を検討し、目的やKPIを設定します。この設定に当たっては、現状把握を正確に行い、そのための課題や解決策を設計するために学んだフレームワークを活用していきます。

マーケティング入門

直感とデータで挑む戦略の未来

自社の強みはどう活かす? ある企業の事例と富士フィルムの事例から、自社の既存の強みをいかにターゲットに届けるかというマーケティング手法の有効性を学びました。他社のサービスをどの程度意識し、意思決定に反映するかも重要なポイントです。機能比較のためにまるばつ表を作成し、改善点を洗い出す手法には一定の効果があると感じる一方、プロダクトの機能が他社と類似し、手数料による差別化が進むケースもあるため、実行のスピード感も求められていると実感しました。 どの軸で攻める? 経営層の直感的な意思決定によって各種プロダクトが立ち上がり、顧客層が中小企業向けから大企業向けに拡大する中で、今後どの軸で攻めるかを議論する段階にあると感じています。プロモーション手法に先立ち、まずは各プロダクトがどの伸び代に位置しているかを明確にし、戦略を立案することが最優先事項だと思います。経営陣へのインプットも含め、各種マーケティングフレームワークを用いて、伸び代の定義やデータ分析の結果を踏まえた戦略作りを進める必要があります。 戦略検証はどう進む? また、既存顧客の属性をデータで分析し、ユーザーインタビューなどを通じた現プロダクトの価値検証によるメンタルモデルの分析が欠かせません。海外サービスを視野に入れた競合分析やポジションマップの作成、事業戦略とのストーリーラインの接続、さらに市場規模(TAM、SAM、SOM)の試算など、各種分析を通して具体的な全体戦略を描くべきだと考えています。加えて、既知の要望の深掘りをプロダクトロードマップに反映するとともに、エンジニアとの密なコミュニケーションや開発リソース確保のための内部稟議も重要な要素となると感じました。

クリティカルシンキング入門

問いで拓く学びの世界

どんな問いを見つける? どのような問いを立てるかが、その後の課題設定や解決策の方向性を決定づけるため、非常に重要なポイントと感じています。問いの立て方ひとつで、取り組むべき課題や解決方法が大きく変わることを実感しています。 本質の問いは何? また、本質を捉えた問いとは、なんとなく考え始めるのではなく、常に問いを意識し、組織全体で共有されるべきものです。かつては「問い」がうまく立てられないと感じていましたが、どの問いも「不正解」であるわけではなく、より最適な問いを見つけるプロセスの一環であると理解するようになりました。人は無意識のうちに考えを進め、問いの本質を見失いがちである点にも気づきました。 仕事ではどう問いかける? 実際の仕事では、抽象的な目標が示される中で自分の課題ややるべきこと、解決方法を見つける過程で、まずは課題の整理、原因分析、そして「なぜなぜ」のアプローチを実践するようになりました。こうしたプロセスを通じて、解決策や具体的な打ち手が見えてくると感じています。 問いにじっくり向き合う? 問いに向き合う際は、すぐに「これだ!」という結論に飛びつくのではなく、じっくりと時間をかけて向き合うことが大切だと実感しています。また、問いかけ形式で具体的に考えることや、グラフや視覚化、表の加工といった手法を用いて、根拠をしっかりと押さえながら解決策を見出すよう努めています。 評価で問いは正しい? たとえば、人事考課の時期に自己評価や上司からの評価を考える際、期初の目標設定の段階で正しい問いがすでに組み込まれていることに気づきました。この経験から、正しい問いの設定が評価にも大きく影響するという点を再確認しています。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

データ・アナリティクス入門

目的で変わる!本気のデータ分析

分析の目的は? 今回の課題を通じて、データ分析の出発点はデータそのものではなく、「この結果を用いて何を判断するのか」という目的の明確化にあると実感しました。これまで、私自身は目的を曖昧にしたまま手元のデータ項目を比較することで、単に数値の違いを示すだけに終始していたため、数値の変動理由が不明瞭なままで、次にどのような行動を取るべきかが判断できませんでした。 比較軸整理はどう? 今回の学びから、目的に立ち返り、目標達成に必要な情報が整理された項目を選定し、条件が同じ項目同士を比較することが、真に意思決定に結びつく分析を行うために不可欠であることに気付きました。今後は、分析の前に判断すべき内容を明文化し、それに基づいて比較軸とデータ項目を整理することで、より実践的かつ具体的な行動に結びつく分析を目指していきます。 施策の実行は? また、今回学んだ「目的に基づくデータ分析」の考え方は、私が関わるチームの売上拡大や販売体制の最適化にも大いに活かせると感じています。たとえば、催事別、店舗別の売上や人員配置などのデータをただ眺めるのではなく、「どの施策が成果に結びついているのか」「どの事例を基準にすれば再現性のある成果を期待できるのか」という明確な目的をもとに分析することで、成功要因をより具体的に特定することが可能になります。 具体的な行動としては、まず分析前に判断すべき内容を明確に記述し、比較軸や指標を整理します。その後、時系列や複数の切り口からデータを集計・可視化し、売上や生産性への影響を検証する手法を取り入れます。このプロセスにより、チーム全体で施策の再優先順位を見直し、より効果的な行動計画を策定していく所存です。

データ・アナリティクス入門

4つの視点が導く成功のカギ

講義で何を学んだ? 今回の講義では、課題の把握と改善プロセスについて学び、問題を「何が(What)」「どこで(Where)」「なぜ(Why)」「どのように(How)」の4つの視点から捉える重要性を再認識しました。特にA/Bテストを通じて、異なる施策を比較検証することで、効果的なマーケティング戦略を導き出す手法を理解できたことが印象的でした。また、仮説を立てた上でデータを収集し、検証と改善を繰り返す思考サイクルにより、日常に即したデータ分析力を鍛えることができたと実感しています。 チームでどう連携? また、チーム全体で納得感を持って課題に取り組むためには、課題解決のステップを着実に踏むことが不可欠であると感じました。例えば、アンケート結果から要望を読み取る際には、根拠となるデータを明確に示すことが効果的であるという点や、研修の理解度チェック問題で正答率が低かった場合には、単に理解不足と結論付けるのではなく、解答プロセスを丁寧に分解して検討する重要性についても触れています。各要因を切り分けて検討することで、真の原因を見出すことが可能となると理解しました。 多角検証の意味は? 「What」「Where」「Why」「How」のステップを意識することで、問題解決に向けた思考がより整理され、課題特定時の統一感を保つことが大切だと気づかされました。仮説立案においては、一面的な見方に偏らず、多角的なアプローチで検証する方法の有効性を実感し、検証段階では先入観にとらわれず、検証したい点以外の条件もしっかりと統一されているかを確認する重要性を学びました。これらの学びを今後の業務に活かし、より深く課題に向き合っていきたいと考えています。

クリティカルシンキング入門

学びで魅せる問題解決の瞬間

4つの基本は何? 問題解決のステップとして、まず「What(問題の明確化)」「Where(問題箇所の特定)」「Why(原因の追求)」「How(解決策の立案)」の各要素に沿って、問題が何であるか、どこに問題があるのか、なぜその問題が生じたのか、そしてどのように解決すべきかを整理します。 現状をどう把握? 現状を正確に把握するためには、問題を分解して考えることが基本動作となります。その際、MECE(もれなく・ダブりなく)を常に意識し、目的に応じた適切な切り口と切り方を選ぶことが大切です。 切り口はどう選ぶ? 具体的には、MECEの切り口としてまず、全体集合を部分集合に分ける方法があります。例として、年齢、性別、職業などの観点から情報を整理します。次に、事象を変数で分ける手法、例えば「売上=単価×数量」や「利益=利益/売上」といった考え方があります。さらに、ある事象に至るプロセスに着目し、お客様が不満を感じる可能性のある各段階(ご案内、オーダー、提供時間、味、会計、退店後など)を細かく見極める方法も有効です。 対策はどう決める? サービストレーナーとして店舗向けのクレーム問題に取り組む際は、問題がどの程度のものか、どこに問題があるのか、なぜその問題が発生しているのか、そしてどのような対策を講じるべきかを徹底的に分解しながら分析します。このとき、プロセスの各段階を重視し、冷静かつ客観的に全体を俯瞰することが重要です。 日常にどう活かす? 以上の考え方は、問題が起きた際にネガティブにとらえず、全体像を俯瞰して分析するための基本的なアプローチとして、日常的に意識し習慣化することが求められます。

リーダーシップ・キャリアビジョン入門

リーダーシップとデータ活用で未来を拓く

リーダー姿勢はどう? リーダーの本質は、つき従う者が存在することであり、信頼がなければ従う者はいないという点にあります。したがって、リーダーは自ら行動を起こし、組織のあるべき姿勢をメンバーに示すことが重要です。また、目標の重要性をメンバーにしっかりと理解させる必要があります。 困難にどう向き合う? 目標達成の過程では、必ず困難や課題に直面します。その際に、リーダーが逃げたり、メンバーに責任を押し付けたりすると、信頼は得られません。メンバーは、実務能力だけでなく、困難や課題にしっかりと向き合う意識を持つことをリーダーの行動を通じて見ています。 CRMで何が変わる? 現在、マーケティング、戦略、商品企画業務に従事していますが、職場でのCRMデータ活用はまだ十分に浸透していません。そこで、CRMデータを活用したマーケティング戦略と商品企画を目標に掲げています。具体的な分析結果をもとに啓蒙活動を始め、メンバーにこの意義を共感してもらうことが重要です。自らの事例を分かち合い、部会などを通じて分析目的やデータの切り口を発表させることで、職場でのCRMデータ活用を普及させています。 以下のステップで活動を進めています: 1. 目標設定と部内での課題提起(実施済) 2. 自身の分析事例の明確化(実施済) 3. 他メンバーへの目標と取り組みたい内容の明確化(12月) 4. 他メンバーが実施した分析手法とその目的の明確化(12月から2月) 5. メンバーからの事例を集め、集合知として事例集を完成させる(3月) このプロセスを通じて、組織全体でCRMデータの活用を深め、効果的なマーケティング戦略を構築することを目指しています。

クリティカルシンキング入門

データ分析で「全体像」を掴む技術

全体像はどう描く? データ分析において、状況を明確にするために分解が重要だと改めて感じました。まずは全体像を定義し、その上でデータを鵜呑みにせず可視化することが大切です。これまでの分析ではグラフを十分に活用してこなかったため、今後は積極的に取り入れたいと思います。比率計算を行うことは基本として、これまでの実践が正しかったと確認できた点は良かったです。 どの視点が大切? 分析する際、単に機械的に分けるのではなく、BtoBビジネスでの分析環境を踏まえて、年齢層や学生かどうかといった視点を考慮することが重要です。特徴的な傾向が見えない場合でも、それ自体に価値があることを意識し、様々な切り口から分析を試みることが大切です。こうしたアプローチを通じて、データ分析の精度を上げていきたいと思っています。 仮説の真実は? 私は頻繁にデータ分析を行う立場にいますので、全体を改めて定義し、グラフを駆使しながら多角的にデータを分解してみることに挑戦したいと考えています。また、特定の仮説が正しいか検証するためにも、多様な切り口での分析を継続して行いたいです。現在の業務改善プロジェクトで実践している「プロセス分解」にも、さらに効率的に活用できる方法を追求していきます。 過去と今を比べる? そこで、過去のプロジェクトレビューを計画しています。以前取り組んだ案件のデータを利用し、当時と最近の学びを基にした分析を比較し、効率や分解の質を評価したいと考えています。結論が変わることはないと思いますが、分析時間や分解の質など他に計測できる点を比較し、効率化の可能性を探りたいと思います。適用可能なプロセス分解手法は、今後も活用していくつもりです。
AIコーチング導線バナー

「分析 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right