戦略思考入門

ビジネスの知識を深めた環境保守事業の成功例

ビジネスのメカニズムとは? ビジネスの知識は「先人の知」であり、既存の法則や手法の上に成り立っていると考えられます。多くのビジネスが存続している理由を分析すると、規模の経済性、範囲の経済性、習熟効果、ネットワーク経済性といったメカニズムによって分類できることがわかります。 経済性を活かす戦略は? 当社の基幹ビジネスである環境測定関連の保守事業が全国展開したことは、規模の経済性に該当します。また、関連するシステム開発や他の環境関連部署を設置した事例は範囲の経済性に当たります。社内資源の活用だけでなく、顧客接点やブランド力といった無形資源も考慮に入れることで、規模や範囲の経済性を最大限に活かしながら、不経済に陥らないよう留意すべき点についても理解が深まりました。これにより、業務改善に対するアプローチも変わってきます。 多角化の根拠は何か? さらに、今後の多角化を進めるにあたって、単にキーワードを関連づけるだけでなく、その多角化の根拠を明確に整理し、より戦略的な思考を持つことが必要だと思いました。 多角化事業をどう分析する? 以前、自社事業の多角化状況を表に整理したことはありましたが、その経緯や現状については十分に考えていませんでした。多角化事業のそれぞれがどのメカニズム上に成立しており、現在のどの段階で規模や範囲の不経済に陥っていないかを分析することが重要だと感じています。新規事業の位置づけについても、ビジネスのメカニズムに則った説明ができるように分析を進めたいと思います。

データ・アナリティクス入門

歩みと気づきをつづる学びの記録

現状は何を示す? 問題解決のプロセスでは、まず「What:問題の明確化」から始め、現状とあるべき姿のギャップを把握します。現状を定量的な数値で示し、関係者間で共通認識を持つことが重要です。取り組むべき問題は、単なる異常事態の解消だけでなく、目指すべき姿へ到達するためにも活用できます。 どこに問題が潜む? 次に「Where:問題個所の特定」に進みます。ここでは、Whatの段階で整理した構造を基に、具体的な問題箇所を抽出します。たとえば、売上の構造を「客数×客単価」といった形で分解することで、問題所在を明確にすることができます。 なぜ原因を探る? 「Why:原因の分析」では、特定した問題箇所をさらに下位概念に分解し、具体的な原因に迫ります。詳細な原因把握は、問題解決のための重要なステップとなります。 どう取り組む解決策? 最後に「How:解決策の立案」を行い、制約や条件を踏まえた上で効果的な対策を導き出します。各ステップを順に辿ることで、全体像を把握しながら解決策を組み立てることが可能となります。 どうしてツリーを活用? また、クライアントから抽象的な課題が事前に提示されることが多いため、ロジックツリーを作成して情報を整理することが効果的です。全体の流れや解像度を上げることで、関係者間の認識合わせがスムーズになり、感度の良い切り口を見つけやすい環境が整います。案件のキックオフ時には、まず自分なりにロジックツリーを構築し、可視化することでその効果を実感できるでしょう。

データ・アナリティクス入門

データ分析で未来を切り拓くために

データ分析の目的を見直す データ分析の手法として、データの収集、加工、そして発見に焦点が当たりがちですが、何のためにデータ分析を行うのか、その目的が最も重要だと認識しました。そのために必要なデータ項目を選定し、それに基づいてデータを収集する習慣や仕組みを作る必要があります。ただ業務をこなすだけでは、将来に向けた効果的な分析ができず、特に自社の業務データはインターネットで入手できないため、自社内での心がけが欠かせません。 本当の売上分析とは? 私の業務では、データを集計して資料に記載することで終わることが多く、本来の意味での分析に至っていないと感じました。自部門の売上高を集計することが多いのですが、他部門との比較を通じて本当の意味での売上分析を行う必要があり、もっとオープンな視点での比較を考える必要があります。また、落札情報などを蓄積し、市場の相場観も併せて分析することが求められています。 有用なデータの収集方法とは? 現在、社内では中期経営計画の策定時期が来ており、過去の売上や競合他社の状況、他部門との比較を行いながら、データ分析を活用したいと考えています。しかし、データが社内に散在しており、有用なデータが収集しにくいという課題があります。そのため、将来を見据えてどのようなデータが必要かを社内で議論し、データ分析がしっかりと根付く職場環境を作りたいと思います。データを蓄積するためのフォーマットを作成し、社内メンバーがそれを保管・活用できる仕組み作りも進めていきたいです。

戦略思考入門

戦略思考で切り拓く未来への一歩

長期視点って大事? 戦略思考は短期的な成果だけでなく、長期的な視点に立って計画や行動を進めることで、持続可能なビジネス成長を実現するための重要な要素であると学びました。限られたリソースである時間や人材を最もインパクトの高い活動に集中させるために、フレームワークを活用して幅広い視野を持つことの大切さも実感しています。今後は、内部の戦略だけにとどまらず、外部の市場や競争環境の変化をいち早く察知し、柔軟に対応できる力を身につけたいと考えています。 どう戦略を磨く? 現在、営業企画として業務に従事しており、ターゲットの洗い出し、データ分析、プロジェクト計画の策定といったさまざまな場面で戦略思考の必要性を感じています。今後は、アウトプット作成に際して常に戦略的な視点が反映されているかを確認する習慣を確立し、より質の高い企画立案に努めたいと思います。 未来をどう描く? まずは、本講座の復習や読書を通して知識をさらに深めることを第一歩とし、次のステップとして自社業務におけるシナリオプランニングに取り組みたいと考えています。複数の異なる市場シナリオを設定し、それぞれに対する営業戦略を検討するとともに、データ分析ツールを活用して顧客データや販売データから有用なインサイトを抽出し、戦略の根拠をしっかりと定めたいです。また、メンターや同僚とのディスカッションを通じたフィードバックを取り入れ、PDCAサイクルをしっかり回していくことで、より実践的な戦略思考を養っていく所存です。

リーダーシップ・キャリアビジョン入門

リーダーシップ変革への挑戦!

指示の基準を変える理由とは? これまで私は「仕事の難易度」や「任せる人のスキル、経験」といった基準で指示を出していました。しかし、「環境要因」や「適合要件」という観点から再考することで、より深い理解が得られると感じています。また、マネジリアルグリッドという分析方法を知り、自分自身だけでなく、部下や同僚、上司の理解にも役立つと実感しました。リーダーシップとは直感に基づくものが多いと思っていましたが、基本的な理論を学ぶことで基礎力を高めることが重要だと考え直すことができました。 目標達成に向けた具体的なアプローチは? 下半期が始まる中で、具体的な目標を立て、その取り組みの必要性を明確に説明することで、変革を推進する姿勢を示したいと考えています。その際、各目標達成に必要な「環境要因」と「適合要件」を検証し、条件適合理論に基づいたリーダーシップを使い分けていきたいです。また、営業部門として達成すべき目標が多いため、メンバーにリーダーとしての役割を配分する必要があります。今回学んだ理論を活かし、繰り返し説明することで自分自身のスキルとして身につけていきたいと考えています。 変革を実現するための方法とは? 直近の下期方針説明会では、中長期ビジョンを示し、変革を促す取り組みを打ち出すつもりです。変革を実現するためには、指示型でゴールを設定し、具体的な活動を決定することが重要です。また、定期的な会議や1対1のミーティングを実施し、状況確認を行う中で、褒めることを実践していきます。

クリティカルシンキング入門

データを可視化して得られる学びの挑戦

数字だけでは捉えきれない問題とは? なぜ数字だけを追うと本質的な問題が捉えられないのでしょうか。それは、情報を表面だけで捉えるのではなく、分解の階層を深くすることで新たな視点が得られるからです。さまざまな切り口で解釈し、グラフなどを用いて俯瞰的に見ることで、視点が変わることがわかりました。 新たな視点を得る思考プロセス この過程で特に印象深かったのは、情報を直接受け止めるのではなく、自分で手を動かし、「他に何か切り口はないか」と考えつつ、出された答えに常に疑問を持つという思考プロセスです。このプロセスに大きな衝撃を受け、学びの多い経験となりました。 医療現場での重要なアプローチは? スタッフの教育や職場環境、患者や家族の問題を常に要素分解して、本質的な問題を抽出し解決する。このアプローチは特に医療現場で役立ちます。医療の現場では、複合的な問題が重なることが多く、特に救急医療においては「秒単位での時間軸」で変化が発生するため、迅速かつ深い分析が求められます。これによって職場や患者により良い医療を提供できるようになるのです。 問題解決にはどのような手法が有効? さらに、全ての問題に対してロジックツリーで考えること、情報を頭の中だけで整理するのではなく、手を動かして可視化することが重要です。また、MECEに従った分解では「何の目的」で分解するのかを常に考え、分解は最低でも3階層まで行うようにします。これにより、数字もグラフ化され、全体を俯瞰できるようになります。

データ・アナリティクス入門

仮説で紡ぐデータの物語

分析で何が分かる? 本日の講義では、「分析とデータの関係」「データの種類」「データ分析で大切なプロセス」という3点を新たに学びました。分析目的を明確に設定し、仮説を立てた上で様々なデータを検証することが非常に重要だと感じました。目的が曖昧なままだと、分析ニーズに対し誤った結論を導く懸念があるため、職場だけでなく人間関係や恋愛の場面でも同じ考えが当てはまると思います。 受講生はどう感じる? また、講義中には他の受講生の方々から、データを分析する理由や扱うデータの種類について意見を伺う機会がありました。その中で、各々の環境や状況によって分析の目的や手段が異なるという点を実感し、本来の分析の定義を再確認できたのが印象的でした。今後は、職場の仲間にも本日学んだ内容を的確に伝えられるよう努めたいと思います。 なぜ分析重視? さらに、受講生全員が各自の理由でデータ分析を必要としているという共通点に気づき、非常に心強く感じました。今回学んだプロセスを活かし、今後のBI分析やデータの可視化作業に取り組む際には、まず分析目的と仮説を明確にすることを心がけたいと考えています。 部署連携の意義は? また、各部署とのヒアリングやニーズ調査を通して、求められる情報分析と可視化を準備することも重要だと感じました。私自身、新たな職場での取り組みとして、近々導入予定のシステムを活用するために、まずはデータの整理と分析方法についてしっかりと学び、理解を深める必要があると実感しています。

アカウンティング入門

数字の裏側で輝く経営戦略

利益の意味を探る? 利益という観点から考察する際に、5つの側面それぞれが持つ意味や違いについて理解を深めることができました。単に売上や費用といった数値を追うのではなく、顧客にどのような価値を提供しているかを分析する重要性を改めて実感しました。 数字で見える特徴? また、利益を軸としてその根底にある数字から事業の特徴を捉える方法は、非常に興味深いものでした。各数値の妥当性を検証するために、同業他社との比較を通じた客観的な視点が大切であると感じました。自社での状況と照らし合わせながら、数値の背後にある意味を具体的に想像することが、経営判断において重要なプロセスだと学びました。 環境要因で差が出る? さらに、顧客から実際にお金を支払ってもらえる基盤として、立地などの環境要因が果たす役割にも気付かされました。例えば、ある業態においては、単に基本的な品質や高級感を提供するだけでなく、特定の差別化要因を取り入れることで、付加価値を高めることが利益向上に繋がることが印象に残りました。 価格設定はどうすべき? また、売価設定の難しさについても考えさせられました。利益管理の観点から、どのような価格設定が適切なのか、その根拠となる数値をどのように仮定し、検証するのかが経営の一大課題であると感じました。さらに、業績連動型の制度を取り入れている企業において、どの指標を業績評価に用いるのか、そしてその理由を明確にすることで、組織全体の意識改革にもつながると考えています。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

クリティカルシンキング入門

データを分解して新しい発見を得る方法

少ないデータを分解する方法は? 少ないデータを最初に見たとき、「わかることが少ない」という印象を持ちました。しかし、データを分解して考えることで、新たに見えてくる情報があることを実感しました。求める情報に対して、適切な分解方法を考えることができるようになったと感じています。 新しい気付きが得られない時の対処法は? また、分解しても新しい気付きが得られない場合でも、それは失敗ではなく、新たな学びであるという考え方に勇気をもらいました。この経験を経て、MECEを意識してデータ全体をさまざまな視点から分析し、手を動かして新しい情報を得ることを心掛けています。 具体的には、顧客データを分析し、仮定していたペルソナとのギャップを発見したり、イベントの参加アンケート結果を基に告知と実際の内容の違いを分析したりしています。また、施策の結果を数字だけでなく、さらに深く分解し新たな情報を提示しつつ判断しています。データを他のチームに依頼する際には、目的や期間を明確に伝え、無駄なデータのやり取りを減らすことを意識しています。 どんなデータが必要か整理するには? 「どんなデータがあれば知りたい情報が得られるのか?」をまず整理し、実際に手を動かしてデータを分解しグラフ化することで、多くの新たな発見が得られます。アンケートを行う際には、逆算して負担を軽減する項目や回答方法を検討し、Excelなどの利便性の高いツールを活用して効率的にデータを見られる環境を整えています。

戦略思考入門

戦略思考で未来を切り拓く方法

ゴール設定はどう? ゴールを設定し、そこへ向かう道のりを決めるという戦略思考においては、各工程での重要なポイントを学ぶことができました。ゴール設定では視野を広げ、大局観をもって考え、そこからKSF(重要成功要因)を見出します。その助けとして、さまざまなフレームワークが存在します。 現状分析は何? ゴールに向かう道のりを決める際には、まず現状分析(内部分析)を行い、競争優位性の確保(差別化)と選択と集中(資源活用効率の最大化)について考えます。また、対象としているもののメカニズム、例えばコストに関しては事業の経済性を押さえる必要があります。これらを理解するためのフレームワークも用意されています。 製品開発の進め方は? 戦略思考の一連の流れを実践することで、どのような製品を作るべきか、またそれをどのように実現していくかを検討する際に大いに役立ちます。顧客に求められる製品は何かを考え、それを実現するために自分たちの現在の開発能力では不足している場合、どのように能力を向上させ目標達成を目指すかといった具体的な行動を考えることが大切です。 実践で未来は見える? 製品企画の機会はなかなか訪れないかもしれませんが、仮に新しい製品を開発するという仮定のもとで、戦略策定の実践を試みるのが良いと考えます。実践を通じて、戦略思考のトレーニングになるだけでなく、環境分析を通じて広く調査することで、新たな発見の機会となるのではないかと思います。

リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

「分析 × 環境」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right