データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

クリティカルシンキング入門

業務に役立つクリティカルシンキングの実践

目標に近づくには? 全体の振り返りを行ったことで、改めてWeek1の時点で描いていたゴールに近づくために、具体的にどう行動すればよいかを考えることができました。 悩みをどう解決する? 当初、私はお客様の行動分析をするうえで、課題に対する仮説の立て方や、正しい判断をするための具体的な方法が分からないという悩みがありました。しかし、クリティカルシンキングで学んだ自問自答や分解の手法を反復実践していくことで、今後はこの悩みを解決につなげられると思いました。 学びをどう活用する? 次のような業務に学びを活用したいと思います。 - 個人目標設定 - 企画や改善業務の推進(特にゴールを具体化する際) - お客様アンケートなどの行動分析 - 資料・コンテンツ作成 - 他部門や他社への協力要請(コミュニケーション面) 具体的な実行プランは? 自身の業務では、来期の個人の目標設定をする時期にあるため、以下の点を実践し、成果を上げられるように取り組みたいと思います。 - 課題解決の目的を自問自答しながら考える - 事実をもれなくダブりなく分解し、客観的に判断する - 抽象的な情報を具体化し、ポイントを絞って課題解決する - 相手の常識を覆すような情報の伝え方をする - 目的がぶれないように共有し、一貫して押さえ続ける 分析に効果的な方法とは? お客様アンケートなどの結果を分析する際には、イシューを考え、分解する手法を実践したいと思います。実際にやってみると、とても時間がかかることが分かりましたが、客観性を担保することで、効果的な課題解決につながることを知りましたので、今後も業務で継続していきたいと思います。

データ・アナリティクス入門

小さな問いから始まる大発見

分析の仮説はどう? 今後は、自社Webサイトのデータ分析において、依頼を受ける側から自ら積極的にABテストやファネル分析の目的、仮説、プロセスを策定し、実施に移す考えです。各プロセスを詳細に分解することで、どのページやどの段階でボトルネックが生じているのかを明らかにし、原因を追及するとともに、具体的な改善提案ができる分析へと進化させたいと考えています。また、日常生活に存在するささいなデータにも目を向け、シミュレーションを繰り返し行うことで、より一層の分析力向上を目指します。 問題をどう特定? 業務の効率向上や問題解決のためには、まず問題を明確にし、その問題がどの段階で発生しているのかを特定することが重要です。具体的には、以下の点を実践していきます。まず、Webサイトだけでなく、日常生活の中で得られるデータも積極的に収集し、「なぜ」を5回繰り返すことで原因に迫る姿勢を持ちます。次に、あらゆる分野の情報収集を行い、同僚とのコミュニケーションを通じてマーケティングの知識も深めます。加えて、依頼された作業にとどまらず、自主的に分析に取り組むことを意識し、課題に対しては目的や仮説を明確に設定し、複数の仮説を立てながら、ファネル分析やABテストの計画を練ります。 改善策の道筋は? さらに、プロセスをより詳細に分解し、各ステップでのユーザー行動(CS行動)を可視化することで、ボトルネックの特定と原因の解明を進めます。分析結果については、同僚と共有し、議論を重ねながら改善策を提案していく予定です。この一連のプロセスを繰り返し実践することで、より実践的な分析力を身につけ、今後の業務に活かしていきたいと考えています。

データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

データ・アナリティクス入門

ビジネスの答えを導く仮説と検証のサイクル学習

仮説検証の重要性とは? 改めて仮説を立てること、そしてそれを検証することの重要性を学びました。ビジネスには正解がない場合が多いですが、その状況に応じた最適な答えを出す必要があります。そのためには、良い仮説を立て、データを収集し、それを素早く検証するサイクルを回すことが極めて重要です。このサイクルを通じて問題や施策を導き出すことを再認識しました。 フレームワークはどう活用すべき? また、仮説を立てる際にはフレームワークを活用すること、その仮説を検証するためには適切な指標を選び、収集したデータが反論を排除するための情報にまで踏み込めているかどうかを確認することも新たな気づきでした。これまでの経験を振り返ってみると、「仮説~検証」については何となく同じようなことをしてきましたが、仮説が網羅的でなかったり、検証が不十分だったりしました。今後は意識してこれを実行していきたいと思います。 未然防止に役立つ学びとは? 安全衛生活動(事故未然防止活動)にもこの学びを活用します。例えば、ヒヤリハットが年に1回発生している工場と全く発生していない工場では、現状は表面的な差異を見つけて、適当な仮説を立てて施策に結びつけようとしていました。しかし、これからはもっと網羅的に問題を分析し、適切な打ち手に繋げていきたいと思います。 ヒヤリハットの原因を追究するには? まず、そのヒヤリハットが「不安全行動」や「不安全状態」のどちらから発生しているのか、「4M」のどれに起因しているのかなど、問題の発生要素を網羅的に仮説立てします。それが本当にそうであるのか、データやヒヤリングを通して検証していきます。

データ・アナリティクス入門

仮説とフレームワークで導く新発想

仮説の意義はどう捉える? 仮説の意義と4P・3Cのフレームワークの活用について考察しました。現状や現象を整理し、そこから課題を明示する方法としてフレームワークは有効な手段だと認識しています。しかし、設問では仮説の立て方が問われ、その内容が単に問題点や疑問点の抽出に留まっている点に疑問を感じました。仮説を「ある論点に対する仮の答え」もしくは「分からない事柄に対する仮の答え」と定義するならば、現状の把握とその先の打ち手を考察する過程で生じるのではないかと思います。このため、ビジネス上の意味合いに限定して用いるほうが適切であり、安易に「検証」という言葉を使わないほうが良いと考えました。こうした疑問を通じて、仮説とフレームワークの使い分けが整理できたと感じます。 4P・3Cの整理法はどうなる? また、事業計画や事業分析において、4Pや3Cというフレームワークで物事を整理する手法は非常に重要です。思いつきで捉えるのではなく、フレームワークに沿って取りこぼしのない視点で分析することで、発見された課題や問題点が具体的になり、改善策を立案するための基盤となります。さらに、第三者に内容を伝える際にも、論理的に整理された情報は理解しやすく伝わります。 正しい検証はどう進む? 実際の取り組みでは、4Pや3Cのフレームワークを活用した上で、問題点に対して「〇〇ならば▼▼である」という形式で仮説を立て、その上でデータ分析により課題の抽出ができるかを検討しています。これは、問題を具体的なエビデンスをもって示すためのプロセスであり、その後の打ち手の考察へと順序立てて進めることが重要だと感じました。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

戦略思考入門

振り返りで築く未来戦略

どうして多角的な見直し? 仕事において、毎回全てを実施できるわけではありませんが、多角的に物事を見直す「ここぞ」というタイミングを見極めることは重要です。スポーツのビデオレビューのように、過去の自分の行動を整理し、継続するための指針としてまとめることが効果的だと感じました。また、状況に応じて敢えて一つに絞る戦略も大切であると学びました。 定量分析の習得は? 一方で、理系的な定量分析による仮説ベースの戦略思考は、習得に時間を要する課題であると理解しました。指導を受けながらも地道に実践していくことで、徐々に身につけられるという点に納得しています。 キャリア設計はどうする? これからは、3年間の出向が終わる9月以降に自身が取り組む業務を提案する際の題材として、本学での学びを活かしていきたいと考えています。自動車業界は電動化、自動化、DX化などの急激な環境変化に直面しており、その中で「何をやり、何をやらないか」をはっきりさせるために、将来のキャリアプランを見据えた目標設定が欠かせません。 戦略確立の秘訣は? そのために、以下の点に取り組む予定です。まず、自分の将来ビジョンを明確にし、具体的な目標を設定します。次に、現在の課題や管理職のニーズ、組織リソースなどをしっかり情報収集・分析し、全体の整合性を取っていきます。また、自分が行う業務について専門性やスキル、市場環境の観点から差別化を図り、想いや将来性といった軸を定めた上で選択を行います。最後に、その取り組みが本質やメカニズムに合致しているかどうかを整理し、戦略の確立を目指したいと考えています。

デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。

「情報 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right