クリティカルシンキング入門

思考のバランスを育てて、新たな視点を得る

偏った考えは何故起こる? 考えには偏りや制約があることを学びました。人は無意識のうちに自分の好きな考え方に偏りがちで、情報を集めたり思考を巡らせたりしています。このため、重要な情報を見落としてしまい、結果として結論が変わることもあります。また、演習を通じて、制約がないと逆にアイディアが広がりにくい特性があることに驚かされました。 どうして自問自答する? 「もう1人の自分を育てる」ことの重要性を感じました。結論を導き出す際には自問自答を繰り返すことが大切です。業務においては、様々な情報を幅広く浅く得ることが求められますが、それらの中から何が重要なのか、どこまで深掘りすべきかを自問しないと表面的な情報だけで結論を下してしまいます。講義で学んだ視点、視野、視座といった多角的な視点を通じて、手元の情報が十分かどうか、なぜそのように考えたのかを問い続けることが重要だと理解しました。 情報をどう活かす? 私の所属する部門では、日々膨大なデータや事象が発生し、担当者から報告を受けていますが、私はそれらの情報を点で捉えがちです。学んだ「もう1人の自分を育てる」方法を通じて自問自答を繰り返し、思考の偏りをなくしてフラットに物事を捉えられるよう努力しています。これにより重要なポイントに気付け、本質を捉えられるようになると考えています。 目的は何から整理する? 目的を整理する際には、何が目的で、誰に何をどう伝えるのか、必要な情報をフラットな目線で整理します。情報収集が終わった後で、その情報が十分か、様々な視点で再確認することが重要です。最終的な結論に際しては、自分が正しいと考えるだけでなく、もう1人の自分を作り出し、なぜそう考えるのかと問い続け思考を深めていきます。 他者の意見は役立つ? こうしたプロセスを進めるにあたり、他者の意見も取り入れながら、自分の思考の偏りや浅さを確認し、より良いアウトプットを目指しています。

データ・アナリティクス入門

仮説思考で未来を拓く!

仮説のメリットは何ですか? 「仮説」とは、ある論点に対する仮の答えのことです。この仮説を用いることで、説得力の向上、問題意識の高まり、スピードアップ、行動の精度向上といったメリットがあります。仮説は目的に応じて分類され、さらに時間の経過を考慮して整理されます。例えば、過去の問題を解決する方法として仮説を立てることができます。 正しい仮説の見方は? 仮説を立てる際は、目の前の数字だけにとらわれずに俯瞰してみることが重要です。複数の仮説を決め打ちせずに立て、網羅性を持たせるためにさまざまな切り口を考慮します。また、都合のよいデータだけに頼らず、反論を排除するまでの検証が求められます。 仮説技法のコツは? 仮説を立てるテクニックとして、「なぜ」を繰り返して知識を広めたり、別の視点や時系列で考えることが挙げられます。また、ラフな仮説を作る際には、常識を疑い、新しい情報と組み合わせ、発想を止めないことが大切です。 リーダーはどう実践すべき? リーダーの役割として、仮説を検証するプロセスを習慣化するためには、率先垂範し、仮説と検証方法を常に考えることが重要です。また、質問を使ってコーチングを行い、チーム内での役割分担によるブレインストーミングやディスカッションを推進します。 新仮説はどう生まれる? 創造的な仮説を考えるためには、ビジネス内外の組み合わせや否定的な問いを投げかけると良いでしょう。そして、仮説、データ分析、検証方法をセットで考え、それをチームで共有することが求められます。 どう自己を再確認? 最後に、パッションを高めるための自問を言語化し、自分の生きがいやパフォーマンスを再確認することも重要です。これには、自分の目標を再確認し、現在の状況に対する考えを深めることが含まれます。こうしたプロセスを通じて、自身の成長とチームの成功を目指します。

クリティカルシンキング入門

あなたも変わる!イシュー思考の秘訣

イシュー設定はどう? イシューを明確にすることの重要性を学びました。議論中に論点がぶれると、何のために時間や労力を使っているのかが見えなくなり、結果として無駄な議論に終始してしまう恐れがあります。これは、最初からイシューをきちんと設定していなかったためだと感じています。 資料構成のコツは? また、資料作成にあたっては、読み手が負担なく情報を受け取れるよう、構造や流れを整えることが大切だと痛感しました。特にパワーポイント資料は、他のメンバーが編集しやすいよう余計な装飾や偽改行を使わず、シンプルで論理的な構成にすることを心掛けています。 議論のまとめは? 総評として、イシューへの意識を高め、議論の方向性や資料作成にその考え方を取り入れようとする姿勢は非常に素晴らしいと感じます。実際の具体的な事例を交えながら取り組むことで、理解がより一層深まると思います。 大切なイシューは? さらに、日常生活の中で自分にとって特に重要なイシューは何か、具体例を考えてみると良いと感じました。加えて、資料作成において読み手が負担なく情報を取得できるための他の工夫についても、改めて考える必要があると感じています。 部内会議で何を伝える? 月に1回以上ある部内会議では、各自の持ち場から自由に発表する時間が設けられています。私は、現状抱えている課題について、ロジックツリーを用いてまず頭の整理を行い、皆に伝わるようなパワーポイント資料の作成に挑戦することにしました。 稟議書作成のポイントは? さらに、ある新規事業の稟議書を作成した際には、背景・目的・効果・留意点・リスク・導入までのスケジュール・費用など、重要な要素をグラフや図を用いて整理しました。文章量が多い点から改善の余地を感じ、同じ部の仲間と意見を交わしながら、より分かりやすい内容にブラッシュアップしていきたいと考えています。

クリティカルシンキング入門

伝わるスライドづくりのコツ満載!

適切なグラフの選び方とは? 相手に伝えたいことをスライドで表現する際に重要な点は以下の通りです。 まず、グラフの種類を理解し、伝えたい内容に応じて適切なグラフを選ぶことが大切です。スライドは極力シンプルにし、必要な部分にのみ装飾や色を付け加えるよう心掛けましょう。また、伝えたいメッセージの順番に合わせて図表を配置し、読み手の視線が自然に左から右、そして上から下に動くように工夫します。さらに、読みたくなる文章になるよう、アイキャッチを加えたり体裁を整えたりして、視覚的に引き込みやすくすることも重要です。 準備段階で意識すべきことは? 「スライドを作る前段の労力」という言葉が特に印象に残りました。相手に伝えるためには、データの収集から見せ方、文章の工夫まで多くの努力が必要ということを改めて理解しました。これまで学んできたデータの分解や文章作成の注意点を見直し、実践に活かしていきたいと考えます。 例えば、オリエンテーションのスライドでは、読み手の視線の動きを意識し、文章の硬軟に気をつけて作成することが求められます。メール作成においても、どうすれば学生がすぐに読んでくれるかを考え、アイキャッチを置くことや体裁を整えることが重要です。これによりパッと目に入ってきやすいメールが作成できます。 見直しの重要性をどう考える? スライドを作成する前には、まずそのスライドで何を伝えたいのか、その目的を明確にすることが不可欠です。その目的に沿って、必要な情報を考え、収集します。スライドを完成させた後、装飾が過剰ではないか、重要なポイントが一目で分かるか自分で見直すことが必要です。また、メールなどの文章を作成した後には、自分でも新鮮な目で見直し、伝えたい情報がスムーズに入ってくるか確認するよう心掛けます。 このように、伝え方を工夫することで、相手に確実にメッセージを伝えられるよう努めたいと思います。

クリティカルシンキング入門

切り口で明かす学びの本質

データはどう見切る? データの切り方によって、同じ数字でも見える課題や傾向が大きく変わることを実感しました。目的を明確にして「何を見たいのか」を意識した切り分けを行うことで、漠然と眺めるだけでは気づけなかった本質が浮かび上がり、無駄を省いた的確な分析が可能になると感じています。 MECE活用は有効? また、MECEの考え方を取り入れて整理することで、重複や見落としを防ぎ、全体像を正確に把握できるようになりました。その結果、何が起こっているのか、どこに手を打つべきかを論理的に説明でき、相手にも納得してもらいやすくなると学びました。 支援でどう効果発現? たとえば、新規事業の構想支援では、顧客層、提供価値、チャネル、収益構造などの視点で情報を整理することで、情報の抜けや重複を防ぎ、相手の納得感を得て意思決定をスムーズにする効果を実感しました。 組織開発の整理法は? また、組織開発の現場では、ヒアリングした内容を「構造」「風土」「スキル」「制度」といった切り口で整理することにより、課題の全体像や優先順位が明確になり、具体的な施策立案につながっています。 研修・講演はどう整理? さらに、研修や講演の場面でも、参加者にとって複雑なテーマを目的に沿って段階的に分解して提示することで、理解と納得を引き出す効果がありました。オンラインでのクライアントとの対話やレビューの際にも、現在の視点や抜け漏れ、そして本質を可視化することで、共通理解と納得感のある議論が進められると感じています。 学びを今後どう活かす? 今回学んだ「切り口の工夫」や「MECEの視点」は、事業開発や組織開発の現場で、初期の仮説立てからヒアリング結果の整理まで非常に役立つと実感しています。今後はこれらの手法を意識的に活用し、ツールを組み合わせながら日常業務に継続的に取り入れていきたいと思います。

クリティカルシンキング入門

問いの光、会議の鼓動

解決すべき問いは? まず、何が解決すべき問いであるか、そして今、何を解決しなければならないのか、なぜそれが必要なのかを明確にすることが重要です。問いを言葉に表すことで、思考や議論がぶれるのを防ぐための基盤が整います。 論点整理はどう? 次に、その問いに対する答えを導くため、論点を整理します。自分自身の偏りに気を付けながら、さまざまな視点から論点を洗い出すことが求められます。その上で、具体的かつ正確な情報をできるだけ収集し、集めた情報を根拠として論点への答えを主張します。このプロセスを繰り返すことで、内容に厚みが生まれ、主張に説得力が加わります。 適切な表現は? また、問いとその答えをシンプルで正しい日本語に言語化することが大切です。メッセージ性のあるプレゼンテーションにするためには、情報の整理だけでなく、聞き手にとって理解しやすい表現方法が必要です。 会議進行はどうする? 会議を主催し進行する際は、まず解決すべき問い(イシュー)を明確にし、その目的を問いの形で参加者に事前に共有します。定例の会議であっても、イシューを提示することは実践すべき基本事項です。さらに、そのイシューを解決するため、複数の視点からの論点を提示し、各参加者に必要な情報を収集するよう指示すると効果的です。多職種が集まる会議では、さまざまな視点からの情報が交わされるため、基礎知識の習得も欠かせません。 議論軌道修正は? これらの準備を整えた上で会議を進行し、議論が逸れた場合には必ず最初のイシューに立ち戻り軌道修正を図ることが求められます。解決すべきイシューを明確にし、複数の視点から検討するために常にイシューリストを作成し、その優先順位を考察します。こうした準備と情報整理により、各論点に対する答えを根拠を持って主張できるようになり、議論が本筋から逸れるのを防ぐことができます。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

データ・アナリティクス入門

問題の原因をデータ分析で解明!

問題の原因をどう探る? 問題の原因を探るためには、データを確認しながら原因を突き止めることが重要です。問題の原因を明らかにするために、プロセスを分散して問題箇所を絞り込み、原因の仮説を立てるのが効果的です。問題がある場合、その結果には必ずその流れがあり、その流れを押さえることで、プロセスのどの段階に問題があるのかを特定できます。 解決策の検討はどう進める? 解決策を検討する際は、複数の選択肢を洗い出し、根拠を持って絞り込むことが求められます。ステップを踏んでデータを分析し、問題解決の精度を高めることと、仮説を試しながらデータを収集し、より良い問題解決に繋げることは、両者のアプローチを組み合わせることが効果的です。まず手始めに身の回りのデータを分析すること、分析の練習を積み重ねること、そしてどんな分析計画を立てるかシミュレーションし、どんな情報を誰から収集するのか、データはどんな形で収集すればよいかを考えることが大切です。 シンプルで低コストなA/Bテストの利点 A/Bテストは、AとBの施策を比較するシンプルなテストです。運用や判断がしやすく、低コストで少ない工数で実施できるため、リスクが少ない。A/Bテストを行う際には、目的や仮説をしっかりと明確にし、有効なデータが集まるまで実施します。ただし、複数の要素をテストしたい場合には別の手法を検討すべきです。また、パターンは同時に同じ期間行うことが必要です。 データ分析の第一歩は何から始める? 解決策を考えるときには、必ず複数の選択肢を検討し、「ステップを踏んでのデータ分析」と「仮説を試しながらのデータ収集」の両輪で分析を行うことが効果的です。分析が苦手な方には、まず身の回りのデータを分析すること、分析の練習を積み重ねること、そして問題にはそこに至るまでの流れがあることを意識することをお勧めします。

データ・アナリティクス入門

データ分析の要点と活用法を深堀りするコツ

Week6での気付きは? Week1から学んでいたことが、ようやくWeek6で腑に落ちた感じがしました。 仮説思考の重要性とは? ライブ事業では、ストーリーを立てて分析する方法を具体的に学びながら復習することができました。 よい分析のためには「仮説思考」が重要です。まず目的を明確にし、問いに対する仮説を立てます(例:打率ではなく失塁率が高い選手が原因ではないか)。次にデータを収集し、その仮説をデータで検証します。仮説がデータにより証明されなければ、新たな仮説を立て直します。 データ収集はどう進める? データ収集の手段としては、検索エンジンや公開データ、アンケートやABテストなどがあります。 分析を進める際の5つの視点として、以下の点が重要です: - インパクト:影響度の大きさ - ギャップ:何がどのように違うのか - トレンド:時間的な変化の傾向 - ばらつき:分布に隔たりがあるか - パターン:法則性があるか WEBマーケティング分析のポイント グラフ化のステップとしては、まず仮説やメッセージを明確にし、比較対象を決めて、適切なグラフを選びます。 WEBマーケティングの売上に繋がりやすい顧客の分析には、以下の点を考慮していきます: - 企業規模や購入製品群(リピート購入か、多種製品群を購入しているかなど) - 地域による差異 - 製品の月別の差異 - 顧客情報の獲得経路の有効性 これらをMECEに分解し、先入観を避けつつ仮説検証を進めます。 来月以降、少し余裕ができるので、上記の分析を進め、WEBサイトの改善を図ります。ロジックツリーの活用で細かく分解しつつも、Week6の講義にあったとおり、目的に必要な分析範囲を見極めたいと思います。また、メンバーに説得力のあるプロセスを踏み、説明することも重視したいと思います。

クリティカルシンキング入門

踏み込むデータ、広がる発見の世界

データと本気で向き合う? データの用い方や見せ方について再確認でき、また新たな発見を得ることができました。従来は説得力や妥当性を高めるためにデータを利用してきましたが、今回の講習では「データとの向き合い方」自体に踏み込むことで、さらに可能性が広がると感じました。踏み込むというのは、データを分解・分析し新たな発見につなげることを意味します。これまでは、一定の目的が達成できればそれ以上深堀りしなかった自分を反省し、今後は偏りを減らしてより深く分析することで、発見の数や他者への探求の深さ、そして説得力の向上につなげたいと思います。単に表面的な理解で終わるのではなく、データから何が見えているのかを追求していく姿勢が大切だと感じました。 業務で分析は活きる? また、業務においては分類・分解・分析が多くの場面で役立つと実感しました。たとえば、目標設定では、市況や需要予測に基づいてシェアや販売量を設定し、その根拠となるデータや分析結果をもとに説明することで、計画の信頼性が高まります。実施計画においては、マーケティング戦略や営業活動の手段、ターゲット、期待できる効果、効果が現れるまでの時間などを細かく整理し、実行者、評価者、受益者それぞれとの連携を明確にすることが可能です。さらに、効果測定では、シェアや販売量・金額と実施計画との因果関係を明確にして、次のアクションの策定や判断につなげることができます。 分析手法を検討する? こうした業務プロセス全般において、データの分類・分解・分析は有効な手法です。具体的には、説明が必要な場面で、利用可能なデータや参考になる情報がないかを常に意識し、検討することが大切です。たとえば需要予測においては、単に過去の推移を見るだけでなく、季節要因や提供者ごとの特徴も踏まえて分析することで、より実効性のある判断が下せると感じました。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

データ・アナリティクス入門

ロジックツリーで退職分析に挑戦

自分に関係付ける重要性とは? どの内容も聞いたことがあるものでしたが、自分に関係付けて考えたことがないと気付き、少し恥ずかしい思いをしました。特に、ロジックツリーについては知識としては持っていたものの、実際に描くことはほとんどありませんでした。今後は退職分析において、要素分解を試みたいと思っています。こうした学びに必死になって取り組める環境に飛び込んで良かったと、改めて感じています。 問題解決の思考法はどう実践する? 問題解決のプロセスとして、What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているか)、How(どうするか)の順に考えることを学びました。しかし、私の場合、特に「Why」にこだわりすぎて哲学的になりすぎたり、わからなくなってしまうことがあります。そのため、この順番通りに愚直に考え、PDCAサイクルのように思考を回していきたいと思います。 人事データの分類方法は? 私は人事部でデータ分析を担当しています。ロジックツリーにおいて、人事データに関する情報は、「個人情報」や「雇用情報」などに分類されます。具体的には氏名、生年月日、性別、入社日、部署、役職、資格、経験、語学といった情報です。これをMECEにするためには、さらに細かく分ける必要があると感じました。また、人事データという漠然としたカテゴリーから、具体的に項目を洗い出すことが可能だと思いました。 実践のために心掛けることは? 実践においては、手を動かし、描き出すことが重要です。周囲のメンバーと積極的に対話し、多角的な意見を収集するよう努めたいと思います。同時に、目的を明確にすることを忘れないように心掛けます。そして、私は製造業に勤めていますので、「直接部門」と「間接部門」を混同しないよう、気を付けて分析していきたいと思います。

「情報 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right