データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

データ・アナリティクス入門

データ分析で見えてきた課題解決のコツ

データ分析の重要性とは? データ分析において重要なのは比較することです。データは分かりやすく加工して活用する必要があります。また、私自身が特に気をつけたいのは、目的を決めてから行動することです。課題がどこにあるのか、なぜそうなっているのかを考え、選択肢を出してから仮説を立てて進めることが大切です。 売上向上に必要な行動は? クライアントの課題解決に際しては、大きな目的である売上向上に対して、小さな目的を設定してから行動する必要があります。どこに課題があるのか、仮説を持ってヒアリングを行いたいと思っています。また、自身の営業計画立案においても、既存の課題や理由だけでは向上しないため、繰り返し検証して精度を高めていきたいです。 ヒアリングの視点はどうする? 具体的には、クライアントヒアリング時において、「What」「Where」「Why」「How」という観点から文章を用意し、必要に応じて「あるべき姿」とのギャップについて整理していきたいと考えています。自身の営業計画についても、現時点で考えている課題と理由を再検討し、改善を図りたいと思っています。

マーケティング入門

顧客志向の新たな価値創造に挑戦

顧客志向の重要性を再確認 マーケティングにおいては、何よりも顧客志向が重要であることを改めて学びました。「売れる仕組みを作ること」がマーケティングの定義とされていますが、その根底にあるのは顧客の存在です。すなわち、自社の商品を単に知ってもらうだけでなく、その魅力を感じてもらうことが重要です。 社員満足度向上の方法とは? 自社のサービスを将来的に営業や外部収益に結びつけるために活用するのはもちろんのこと、顧客を社内外のメンバーやステークホルダー全員と捉えることによって、課やオフィスの従業員満足度を高めることにもつながるのではないかと考えます。 全ての人を顧客と捉える意味 自分に関わるすべての人を「顧客」として捉え、その方々に満足していただくためには何が必要かを考えることが大切です。そのためには、その人たちのニーズを正しく把握し、偏った考えに陥らないよう、広い視野や様々な視点、そして高い視座を持って物事を捉えることを意識したいと思います。そして、そのニーズに応える、あるいはそれを上回るサービスを提供できるスキルを磨くことを心掛けたいです。

クリティカルシンキング入門

数字で掴む新たな視点と成長

数字分解の大切さは? 今回の講義では、数字を分解して考える方法や、さまざまな切り口を試し、定義を明確にしてMECEの考え方を適用する手法を学びました。普段あまり意識してこなかった視点から、改めてデータを多角的に検討することの大切さを実感し、新たな気づきを得ることができました。特に、数字に苦手意識があった私にとって、グラフに少し足して割合を示すなどの工夫が、問題点の発見を助けてくれると感じました。 採用データは何見る? また、採用に関する応募者のデータを、自身で分解し、多角的に検討する重要性にも気づかされました。これまでは、採用媒体の営業担当からの数字の共有を受けるだけでしたが、自分でデータを操作し、さまざまな属性からボトルネックを見つけていく試みは非常に有意義でした。今後は、これまでの採用データを自分なりに細かく分解し、現状の強みや弱みを洗い出して、次の募集掲載の対策に生かしていきたいと考えています。 継続的な対策は? 一度の検討に留まらず、継続的にデータを分解し、数字に基づいた対策を立案できるよう努めていきたいと思います。

データ・アナリティクス入門

営業部門と協働し、データ分析の切り口を探る学び

定量分析で何が重要? 定量分析の重要性と、分析では比較や仮説、目的が重要であることを学びました。実務においては仮説を立てる能力や、分析において適切な切り口を見つけることが求められます。このためには、分析対象に対して強い興味を持つことが大切だと感じました。 問合せ増加の施策検討 現在、私は担当しているWEBサイトからの問い合わせ数を増やすための施策検討を行っています。問合せの生データやサイトのアクセスログなど、使用可能なデータは整っています。また、SFAデータを分析し、2025年度の営業施策を検討中です。こちらについてもSFAデータにアクセスできる状況にあり、今後加工は必要ですが、元データは揃っています。 SFAデータ分析の進め方 まずは、SFAデータの分析から着手する予定です。SFAデータには多くの分析切り口が存在しますので、目的や仮説を明確にするために、いきなり手を動かすのではなく、営業部門の担当者を巻き込むことにします。具体的にはどういった分析が求められるのか、現場で役立つかどうかを相談することが大切だと考えています。

デザイン思考入門

共感と洞察で切り拓く営業の極意

共感ってどう大切? 共感の大切さが一番印象に残りました。ユーザーの動作や発言に注目し、彼らの立場から本質的な課題を捉える観察力が必要だと感じました。また、誰がどのような状況でどんな課題に直面しているのかを明確にし、仮説に基づいた解決策を提供することの重要性も実感しました。 営業はどう変わる? BtoB向けの営業プロセスでは、自社商品やサービスの提供に留まらず、まずユーザーの課題を把握することが基本です。ユーザーの課題を観察し、仮説を立てながら顧客との検証を繰り返すことで、まだ気づかれていない本質的な問題にも気付くことができ、その結果、より効果的な営業活動(インサイト営業)につなげることができると感じました。 課題共有は必要? また、商談前に課題を共有する活動の重要性も印象に残りました。普段の業務においては、顧客サーベイやチームでのブレインストーミングを通じ、ユーザー視点の仮説を多々収集しています。その後、実際の検証結果をもとに、各メンバーが顧客との面談時の特性や仮説の内容を共有し、より質の高い対応策の検討へとつなげています。

クリティカルシンキング入門

問い続ける先に未来がある

本当にそれでよい? Week1からWeek6までの学習を通して、物事の考え方の基礎となるクリティカルシンキングを学びました。自分自身に対して「本当にそれでいいのか」と問い続けることの大切さを実感し、その経験が、自分の思考の癖を改善し、イシューに正しく向き合う力へとつながったと感じています。 真のニーズは? また、営業職として日々活動する中で、相手が何を考え、何を求めているのか、真のニーズは何であるのかを常に探ることは、自分が取り得る手段を増やし、結果にも現れると考えています。加えて、営業以外の新たな役割を担う中で、直面する課題に対しては失敗を恐れず、試行錯誤を重ねながら前進していきたいと思います。 疑問を共有する? 繰り返しになりますが、問い続けることが何よりも大切です。自分が発信する問いを仲間と共有することで、より良いものを生み出せると信じています。どんなに些細な疑問であっても、相手の質問意図を正確に捉えるために、自分の考えが本当に正しい解答であるのかを批判的に自問自答しながら、学びを深めていきたいと思います。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

クリティカルシンキング入門

視野が広がるクリティカルシンキング体験

自分をどう理解する? クリティカルシンキングは、自分自身を客観的に理解できる“もう1人の自分”を育てることです。私たちはそれぞれ異なる思考のクセを持っており、それを紐解くことで互いを理解し、視野を広げた議論が可能になります。 どんな意見交換が必要? 医師への処方提案の幅を広げる際や、テリトリープランを作成するとき、さらには講演会やイベント企画の際にチームメンバーとディスカッションを行うことで、相手の思考を理解し、幅広い視点での議論を深めることができます。また、これらのプロセスは上司とのコミュニケーションを円滑にする助けにもなります。 どこを見直すべき? 医師への提案やテリトリープランの作成において、従来の「〇〇という考えだから〇〇したらいいだろう」という固定観念に依存した営業スタイルを見直す必要があります。イベント企画においても、その開催目的が本当に解決すべき課題であるのか、他の人の意見を取り入れて検討し、常に立ち返る姿勢が大切です。これにより、より具体的で効果的な内容を作り上げることができます。

デザイン思考入門

スキャンバーで広がる発想の輪

スキャンバー法はどう使う? スキャンバー法は、営業目標達成に向けた施策検討の際、漏れなくアイデアを出し合うための思考法です。限られた時間内で、メンバーのモチベーション向上につながる切り口を工夫し、実現可能性を慎重に取捨選択することが求められます。また、短期的には実現が難しいアイデアであっても、長期的に検討するために整理しておくことが大切です。 フレームは理解できる? アイデア出しの過程で、メンバーが各種フレームワークを理解しているかどうかが、出されるアイデアの量や質に大きく影響することに気づきました。そのため、ミーティングではアイデアの否定を行わず、心理的安全性を確保した環境作りが重要だと感じています。 実践はどう乗り越える? ブレーンストーミング法などの名称は耳にしたことがあっても、実際に実践するとなると難しさを感じることがあります。多くのアイデアを出すだけでも、慣れていないと困難を伴うため、スキャンパー法のような具体的な思考法を用いることで、アイデアの漏れや重複を防げると考えています。

クリティカルシンキング入門

MECEで紐解くデータの真実

分析精度はどう上げる? 今回の学習を通して、データの分け方によって答えにぶれが生じること、また分解方法によっては誤った結果にたどり着いてしまうことを改めて体感しました。まずは多くの分け方や分解方法を列挙し、何度も試行と分析を重ねることで、より精度の高い分析結果を導けるのではないかと感じています。その際、MECEの考え方が重要であることも学び、層別分解、変数分解、プロセス分解を用いることで、もれや重複なく整理する大切さを実感しました。 投資家は何を求める? また、機関投資家に対する営業活動の観点からは、自社商品のニーズがどのような属性の投資家にあるかを検討する際に、本学習で得た知見が活用できると考えています。既存の取引先データを加工・可視化し、様々な切り口で分解することで、アプローチすべき投資家像を明らかにできると感じました。さらに、自社商品のプレゼンテーション資料作成においても、特徴や傾向を多角的に可視化し、投資家に商品性への理解を深めてもらうための有効な手段として活かしていきたいと思いました。

クリティカルシンキング入門

伝わる資料作りの秘訣

グラフや色の選び方は? 資料作成において、グラフの使い方やフォント、色の選定といった点に気を配ることで、伝えたい内容がよりわかりやすくなると学びました。何を伝えるのかを明確に整理し、その内容に適したグラフを用いることが大切だと実感しました。 文章工夫はどうする? また、文章についても読者にしっかり伝えるための様々な工夫が存在することを学び、今後の表現方法の参考にしたいと感じています。 営業資料の作り方は? 今回学んだグラフの作り方を活かして、営業会議用の資料を作成する予定です。事業ごとの売上推移や売上構成比など、過去から現在までの変化を把握し、注力すべき事業や見直しが必要な事業を視覚的に示せると考えています。 情報収集のポイントは? さらに、伝えたい状況や状態をグラフに反映させるために、必要な情報が十分に集められているかどうかを確認することが重要です。適切な情報がなければ正しい現状分析ができないため、情報収集の方法や、集めるべきデータの有無についても見直していきたいと思います。

「営業 × 大切」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right