データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

戦略思考入門

捨てる覚悟で切り拓く未来

捨てる決断は何故? 戦略や実務的な戦術検討を進める中で、「捨てる」ことの重要性を改めて学びました。不要な要素を選び捨てる際には、利益額など目的となる関数に直結する数値をできるだけ定量的に評価する必要があります。しかし、必ずしもすべての要素にエビデンスとなる数値があるわけではないため、仮説を立てた上で算出することも求められます。また、利益額だけに頼らず、他の視点や将来予測を踏まえて検討することが大切です。その中から、重要なポイントを客観的に絞り込み、最終的には決断する勇気が必要だと感じました。目的となる関数にはトレードオフとなる要素が必ず存在することを認識し、それが何かを明確にした上で、バランスを保ちながら効用を最大化する方針を定め、注力すべき方向性を明確にします。場合によっては、トレードオフの双方を実現する可能性もあるものの、そのためには革新的なアプローチが必要となります。 市場品質の未来は? 一方、私が所属する部門は、自社内で市場品質プロセスのデジタルトランスフォーメーションを推進しています。直接的に事業検討を行っているわけではありませんが、事業の進む先によって市場品質リスクが変動するため、常に最新の情報にアンテナを張り、将来の方向性を予測しています。その予測に基づいて、ケースごとに注力すべき領域を決定し、「捨てるもの」を選定する姿勢で業務に取り組むことを心掛けています。また、市場品質の改善には複数の個別要素が存在するため、これらを分解して仮説を立て、改善効果を見通すことで、注力すべき領域をより明確に特定できると考えています。

データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

戦略思考入門

捨てる勇気で未来を変える

決断に必要な覚悟は? 今週の学習では、職位に伴い「捨てる=決める」覚悟が求められることを再認識しました。決断の難しさは、実行によって得られるお客さまの満足度や、金銭的コスト、運営効率といった具体的な要因に加え、現状の人間関係にも左右されるため、一層厄介に感じます。本来、仕事の目的はお客さまのためであることを再確認し、その視点を失わないよう、勇気を持って決断していきたいと考えています。 なぜ変化が難しい? また、GAILにおける業務や対応について、なんとなく慣習的に行われている点が存在することも痛感しました。変化を起こすにはエネルギーが必要で、現状維持が一番楽に見えるため、思考停止に陥ってしまうケースがあると感じます。短期的には問題がなくとも、長期的には現状維持が続くことで衰退につながる可能性もあるため、PDCAサイクルを積極的に回し、業務の背景や考え方を継承することが重要だと思いました。また、定期的な担当者(またはマネージャー)の入れ替えにより、「なぜこうする必要があるのか」という疑問を持ち続ける環境を整えることも大切です。 なぜ優先順位付けが必要? さらに、整備士向けのスキルコンテストの事務局業務では、毎年恒例の行事ということもあり、過去の方法にただ従っているタスクがいくつか存在するのが現実です。限られた時間の中で、これまで何となく実施してきたタスクに優先順位をつけ、定量的な判断に基づいて、継続するか見直すかの決断を下す必要があると感じました。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

戦略思考入門

戦略的課題解決: 効果的な一歩を踏み出す方法

戦略はどう学んだの? 講座を通じて、戦略とは目的に向かって効果的かつ効率的に進むための手段であることを学びました。目的が設定され、共通認識を持つことが前提となる中で特に重要だと感じたのは、以下の三つです。 課題をどう見抜くの? まず、課題が発生している部分を明確にすることです。次に、課題解決に向けて適切なフレームワークを段階的に使用すること。そして、優先順位を決めることが重要です。 目的は何を意識? 私自身が常に心掛けたいのは、目的に立ち返ることです。なぜ今この課題解決に取り組んでいるのか、なぜ強みや弱みに対する強化や対策を行っているのかを忘れず、判断するときにはその目的を意識し続けることを目標としています。 活用法はどう検討? 具体的な活用法としては、まず組織編制の際に定量的情報を多く取り入れることにより、効果的かつ効率的な編制を提案していきたいと思います。また、業務設計においては、既存業務で発生するエラーを減らすためにバリューチェーンを活用し、課題の多い部分を特定し、改善を実施することを目指します。 どうやって行動する? これらを実現するために、まずは文字に書き起こし、個人ワークで仮説を立て、その後に正確な情報を周囲から集めて検証していきます。このように行動することで、目的が共通認識され、その達成に貢献できる提案が可能となる環境を整えていきます。したがって、第一ステップとして、文字に書き起こすところから始めます。

データ・アナリティクス入門

データに基づく未来予測の極意

データとは何か? データとは一般的に定量データを意味し、分析とは具体的に要素を分けて整理し、各要素の特性や構造を明確にすることを指します。分析を進める際には、比較対象や基準を設け、それらと比較することが重要です。 データ加工はどう行う? これから学ぶデータも同様に、定量データに焦点を当てます。このデータに応じて、適切な加工法やグラフの見せ方を考える必要があります。たとえば、傾向や頻度を比較する際には縦のグラフが有効で、量の大小を比較する際には横のグラフが効果的です。 分析の目的をどう設定? データ分析を始める前には、【目的】すなわち何のためにデータを分析するのかを明確にし、【仮説】としてどのような項目をどう分析するかをあらかじめ考えておく必要があります。 どんな分析を実施する? 例えば、以下のような内容についてデータ分析を行っていきたいと考えています。 - 優良顧客のデータ分析 - メンテナンス業を伴う機械の交換パーツ分析 - メールマガジン配信後の開封率、クリック測定 - 精度の高い売上予測 - リピート商品の仕組み化に向けた分析 これらの分析によって、例えば上半期の売り上げの高い上位20%の顧客データを抽出し、カテゴリー化することができます。それにより、特定の商品が売れている理由を仮説として考え、その仮説に基づいてキャンペーンメールを配信することで、受注の拡大や新たな分野への展開を図ることが可能になります。

クリティカルシンキング入門

正しい日本語の力を実感した学びの旅

正しい文章はどう作る? 正しい日本語という観点についてはあまり意識していませんでしたが、改めてその重要性に気づく機会となりました。誤字脱字やら抜き言葉、主語と述語の抜けや間違いといった明確なミスがある一方で、正解となる文章を定義するのは難しいとも感じています。これは慣れが必要な部分です。また、ロジックツリーもMECEと同様に、複数のパターンが考えられるため、目的に応じた適切なパターンを選定することが重要です。柱を立てる、対の概念を用いる、具体化するというプロセスは理解できましたが、その柱が本当に目的に適しているか慎重に検討することが必要だと実感しました。具体化の際には定量的な指標や第三者から見ても理解できる言葉で表現することが大切です。 技術意義は何だろう? 現在進めている新技術の実証実験プロジェクトにおいて、お客様から「この技術は何のために実施しているのか分からなくなってきた」というコメントをいただきました。このため、その技術の意味や意義、位置づけを整理する必要があります。今回学んだ内容は、まさにこの整理に役立つと感じたので、今後実践してみたいと考えています。 実験はどう進む? 今週は、新技術実証実験に関する技術の定義やその意義を、ロジックツリーとMECEを意識して整理します。来週には、お客様とともにこの整理した情報を用いて、新技術の価値やお客様のビジネスへの影響度合いを議論する予定です。

戦略思考入門

「捨てる判断で顧客満足度アップ!」

捨てる判断の本質は? 実践演習で最も印象に残ったのは、「捨てる判断」を明確化することでした。目的や指標、課題、そして自身がかけた工数など、さまざまな視点から判断をする重要性を学びました。これまでは工数ばかりが判断基準でしたが、工数がかかっても必要なこと、逆にかからなくても不要なことを見極める必要性を認識しました。この理解が不十分だったので、大変勉強になりました。また、不要なものを捨てることがかえって顧客の利便性につながることも参考になりました。過去の惰性で物事を増やすのではなく、根拠を持って捨てることの重要性を学んだのです。 定量行動の意味は? 今後の企画立案では、この学びを特に意識して取り組んでいきます。特に、定性ではなく定量を意識して行動することが重要です。効率的・効果的に目的を達成するためには、定量的な判断が不可欠です。この判断は、さらに投資をする価値があるのか、あるいは捨てるべきか、方法を変えるべきかという貴重な基準になります。これを意識しながら行動していきます。 効果的実践のステップは? 実践に向けたステップとして、目的や方針の確認、情報の掘り下げ、定性的内容を定量化すること、現状の成果と課題の把握、時間軸をベースとした成果の評価、そして課題解決に向けた優先順位付けを行っていきます。さまざまな選択肢が出てくることも予想されますが、周りの意見も参考にしながら計画を策定していきます。

データ・アナリティクス入門

仮説から未来を切り拓く学び

比較を正確にするのは? 分析は、単に項目を比べるだけではなく、具体的な要素を明確にすることで、より良い意思決定へと繋げる重要なプロセスです。比較対象となる項目以外の条件を可能な限り同一に揃えることで、正確な比較が可能となるため、「Apple to Apple」の状況が求められます。データ分析に用いる情報には、定性データと定量データの両方があり、それぞれの特性を活かしながら分析を進めることが必要です。 仮説の立て方は? データ分析のプロセスでは、まず目的を明確にし、その目的に沿って「仮説」を立てることが大切です。仮説を基に、どの項目をどのように抽出し、どんな結果が想定されるかを考えることで、分析の方向性が見えてきます。また、グラフの作成時には、何を強調したいかという視点から見せ方を工夫することで、情報が整理され、分かりやすいプレゼンテーションが実現できます。 顧客データの意義は? 私は食品メーカーの営業職として、自社の売上や利益のデータはもちろんのこと、主要なお得意先である小売業やドラッグストアなどの顧客データも分析しています。膨大な情報の中から、目的に沿った仮説を立て、抽出すべき項目を明確にすることで、単なるデータの羅列ではなく、得意先の課題やチャンスを具体的に示す資料を作り上げることを意識しています。このプロセスを通じて、課題解決への道筋を明確に示し、より良い提案につなげることが求められています。

データ・アナリティクス入門

なぜ?を突き詰める実践の知恵

原因の深掘りは? トヨタ式「5 Why」を活用し、表面的な原因だけにとどまらず根本原因へと掘り下げる手法が、知識としてだけでなく実践の糸口となった点が印象に残りました。 複数策はどう? また、解決策の検討では、一案に固執せず複数の選択肢を洗い出し、データや定性情報をもとに実現可能性・効果・コストを比較するプロセスがとても参考になりました。さらに、A/Bテストを活用することで条件を統一しながら柔軟に施策を検証していく方法も有効だと感じました。 本質を見抜く? 総合演習を通じて、データを多角的な視点―性別や年齢、曜日、クラスレベルなど―で分解し分析することで、課題の本質を見出す大切さを学びました。アンケート結果と生徒のコメントから、具体的な不満点が明らかになり、問題解決の手がかりをつかむことができました。 なぜを追求する? また、複数の仮説を立て「なぜ?」を繰り返し問うことで、定量データと現場感覚を両立させたアプローチの重要性を実感しました。目的を明確にし、何を改善するのかを起点に指標や手法を選ぶ姿勢は、実際の改善策を実行する上での大きな指針となりました。 具体策は何? 特に、社員の離職率改善を例に、採用からオンボーディング、定着施策までの各段階における仮説立案と検証の流れを学ぶことで、短期・中期・長期のステップで具体的なアクションプランを策定する手法が実践的であると感じました。
AIコーチング導線バナー

「定量 × 目的」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right