データ・アナリティクス入門

基礎定着から実務戦略への挑戦

ライブやグループの難点は? WEEK6のライブ授業では、WEEK1からの振り返りができたものの、まだ基本的な知識が十分に定着していないと感じました。グループワークで自分の意見を述べる際、思いついたことをうまく言葉にできず苦労した場面もありました。「分析は比較なり」や「視覚的にデータの効果的な見せ方」といった考え方の重要性を再認識し、基本的な知識の定着と実務での活用を継続して、熟練度を高めていきたいと思います。 分析と戦略はどう? 私は現在、グループ全体および各店舗のデータ分析や戦略策定を担当しており、来年度の計画立案の時期に入っています。今回の学びを最大限に活用し、戦略立案や目標設定に反映させるとともに、各店舗でのデータ収集、分析、そしてそのデータに基づく戦略立案に生かしていく所存です。 次の学びはどう進む? 今後は、データアナリティクス入門で学んだ知識をしっかり定着させるため、「定量分析の教科書」を活用して理解を深め、実務での活用を通じて実践力を向上させていきます。また、4月から受講するクリティカルシンキング入門を通して、客観的かつ多角的、論理的な思考力を養い、データ分析や戦略立案に役立てたいと考えています。

データ・アナリティクス入門

問いの立て方で学びを深めた講義

比較の基本を理解するには? 分析の基本は、比較です。また、その比較対象を適切に選ぶこと(Apple to Apple)が重要です。本講義とは直接関係ありませんが、ライブ授業と動画学習では問いの立て方が全く異なると感じました。特に、自分は具体的な問いの立て方ばかりをしていたため、久しぶりに抽象的な問いをグループワークで考えることが新鮮な学びとなりました。これは非常に良い機会だったと感じています。 日々の分析で意識すべき点 日々さまざまな分析を実施していますが、比較対象を慎重に選ぶことを実践していきます。その実践の中で課題に感じたことを、常に解決していく姿勢を持ち続けます。具体的な場面が浮かばないこともありますが、これも基本的なこととして心に留めておきます。 多様な問いの立て方が必要? Q2の通り、分析は日々実践しています。そして、その中で本講義で学んだことを実践しながら課題に対する行動計画を常に考えます。Q1の通り、今回は「問いの立て方」に気づきがありました。特に、日常的に従業員に対する問いが具体的なものばかりに偏っていたことを反省しています。これを是正し、従業員に多様な学びを提供できるようになりたいと思います。

データ・アナリティクス入門

仮説で深掘り!売上低下の真因

仮説はどう検証する? 仮説は必ずMESEの考え方に基づかなければならないと感じています。そのため、仮説の正しさを相手に伝えるには、最低でも3つ以上の観点から情報を比較し、各角度で検証する必要があります。また、万が一仮説が間違っている場合に備え、複数の仮説を用意することも重要です。 売上減の理由は? 「なぜ売り上げが下がっているのか?」という問いについて、これまでのアプローチはある特定の数値を比較し、その数値を上げるための方法を提案するものでした。しかし、単に数値を比較するだけではなく、なぜその数値が下がっているのかという深い原因に目を向け、さらに詳細な仮説を立てて実証していく必要があると感じました。今後はロジカルツリーなどの思考ツールを活用し、原因の追求をより体系的に行いたいと考えています。 週次資料はどう整理する? また、毎週作成している週次資料はこの手法を実際に試す良い機会だと感じています。週次資料における各項目の定義を再検討し、仮説構築に不可欠な基本的な指標が何であるかを明確にしていきたいです。さらに、月次と週次で使用する項目の見直しも併せて検討し、より精度の高い改善策を模索していきたいと考えています。

データ・アナリティクス入門

データ分析で実務力を即戦力に!

データ分析の基本を見直す データ分析の基本的な考え方として、「データ分析は比較である」、「データをどのように加工すると分かりやすいかを考える」、「データ分析の目的を明確化する」ことが重要であると認識しました。これまでの自身の業務を振り返り、反省しつつ、今後のデータ分析においてはこれらを忘れずに取り組むことが大切だと考えています。 どのように実績データを活用するか? グループ各店の業務実績データ(定量・定性)の分析を通じて、それぞれの店舗の課題を抽出し、傾向を把握します。そして、課題解決に向けた戦略を立案する際には、データアナリティクス分野で学んだ知識を活かしたいと思っています。 学習した知識を実務にどう活かす? この科目での学習を継続して実務に活かすためには、セミナー視聴やグループワークだけでなく、自主学習を行い、習熟度を高めていくことが必要です。そこで、平日の早朝30分から1時間、そして週末にも学習時間を確保し、理解を深めていく計画です。また、実業務においては、6週間後に学びきるまで待つのではなく、WEEK1から学んだことを即座に業務でアウトプットする意識を持ち、実践力を向上させたいと考えています。

データ・アナリティクス入門

目的明確!多角的視点で読み解く

分析の目的は何? 分析とは、比較によって本質を浮き彫りにする作業であると再認識しました。分析の目的を明確にし、適切な比較対象を選ぶことが、納得感のある結果を導くための基本であると感じています。また、目的に応じた情報の見せ方が存在するという理解も深まりました。 情報整理の必要性は? ダイバーシティ推進の担当として、社内の属性割合や勤務実態の定量データ、そしてアンケート結果といった定性データを扱う機会が多い中で、まずは情報の用途や目的を明確にすることの重要性を改めて認識しました。必要な情報をより深く掘り下げ、検討していくことが今後の課題です。 多角的視点はどう? また、自分だけの視点に偏らず、他者の意見を取り入れることで、多角的な視点から情報を集約したいと考えています。こうすることで、より客観性の高い分析が可能になると実感しています。 透明な分析方法は? 一方で、分析の目的に応じた仮説設定が、恣意的に都合の良い情報操作につながるのではないかという懸念も感じています。今後の学びを通じて、この疑問に対する気づきを得るとともに、より透明性のある分析手法の習得を目指していきたいと思います。

アカウンティング入門

変化する数字が描く未来

大数字は何を示す? PLを読む際は、まず売上、営業利益、経常利益、当期純利益といった大きな数字に注目し、企業全体の状況を把握することが基本です。その上で、経年比較や業界内・他社との比較を行い、数字の変化や違いから企業の特徴や戦略を読み解く視点が重要だと感じました。 業態の違いは何? また、カフェ業態の異なるコンセプトの事例を学ぶことで、提供価値やビジネスモデルが異なれば収益構造も変わることを実感しました。こうした違いは、PL構造に現れるため、各数字の意味や変動を総合的に捉えることが求められます。 矛盾確認はどうなる? さらに、提供価値とPL構造が矛盾していないかを確認する視点も大切です。例えば、高価格帯を謳うビジネスモデルであるにもかかわらず、値引きで売価を下げていたり、原価高騰の中で品質を落としていたり、売上に対する販管費の割合が不釣り合いである場合は、問題の兆候として受け止める必要があります。 改善の鍵はどこ? 事業構造改革を推進している現状においては、時系列でPL構造の変化を再確認し、数字でその改善が実感できるかどうかを追っていくことが、今後の改善に向けた鍵になると考えています。

データ・アナリティクス入門

多角的な視点で挑む数字の謎解き

なぜ一案に固執しない? まず、今回最も学んだのは、あらゆる可能性を考慮し、単一の仮説に固執しない分析の大切さです。たとえ一つの数字が上下したとしても、その変動の要因を丹念に探ることが、次の一手を効果的に打つためには必要不可欠であると感じました。 どうして検証が偏った? 業務上、多くの数字を扱う中で、変化の原因を憶測だけで判断してしまっていたことに気づきました。実際、決め打ちした仮説に基づく検証に偏り、他の可能性を最初から除外していたため、十分な検証ができない場合がありました。今後は、ある要因が数字の変動に影響していると考えた際に、同じ要因が別の状況でも現れているかどうかを比較し、分析の基本である比較の原則に立ち返って検証していきたいと考えます。 なぜ多角的に議論する? さらに、仮説を立てた後すぐにデータ分析に入るのではなく、他に考えられる仮説や視点がないかあらゆる角度から検討することが重要だと再認識しました。特に、一人では気づかない視点も存在するはずなので、複数人でデータを見比べる必要性を感じています。そのため、早速4月からは、より多角的に意見を交わせる組織体制に変更できるよう動いています。

アカウンティング入門

数字が明かす経営の真実

大きな数値の秘密は? P/Lを読み解く際は、まず大きな数字に注目することが基本だと実感しました。売上総利益、営業利益、経常利益、税金等調整前当期純利益、そして当期純利益といった各項目の構造をしっかりと整理することで、全体のビジネスの流れや収益性の全容が見えてきます。 費用内訳はどう考える? また、売上原価率の違いや販管費、一般管理費の内容についても学び、単なる数字の比較ではなく、各費用の内訳から企業がどのようなポリシーでビジネスを展開しているのかを考察する重要性を感じました。特に、業界ごとに異なる費用構成は、それぞれのビジネスモデルの特徴を反映している点に着目することで、より具体的な分析が可能となります。 共通点はどこにある? さらに、同業者や異業種のP/L構造を比較検討し、自社やグループ企業の収益構造とはどのような共通点や相違点があるのかを探ることが、経営戦略の充実につながると実感しました。これに加え、新たなビジネスモデルやそれに伴う技術開発の場合、どのような収益構造が想定されるか、様々な視点から考察するディスカッションは非常に実践的であり、幅広い視野を養う良い機会となりました。

クリティカルシンキング入門

比較と変化で見つける新発見

比較と変化は? 私は、日常の分析活動で「比較」と「変化」の視点が非常に重要であると実感しています。どの分野においても分析は欠かせず、特にメンバーから提出されるレポートを評価し、判断や助言を行う際にこの視点は大きな指針となります。 グラフで何が見える? そのため、視覚的な要素、特にグラフの活用が不可欠です。グラフはデータの比較や変化を直感的に理解させる力があり、情報を分かりやすく伝えます。また、グラフを用いた分析においては、対象を適切に分解することが重要です。この分解はMECEの原則に基づき、内容を重複なく漏れなく整理することが鉄則です。 分解の方法はどう? 分解の方法としては、基本的には均等な分割が王道ですが、状況によっては不均等に分けた方がより筋の通った分析ができる場合もあります。この柔軟な発想で分析することが、実践において非常に役立つと感じています。 分析の極意は何? 以上の理由から、比較と変化の視点を大切にし、視覚的ツールとしてグラフを積極的に用いるとともに、MECEに基づく分解を意識することが、日々の分析やレポート作成において極めて有効であると考えています。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

グラフが語る数字の物語

グラフ化の効果は? データ分析では、まずグラフ化して数値を視覚的に確認することで、比較がしやすくなる点が基本だと学びました。これにより、数字の背後にある特徴や傾向が一目で把握できるようになります。 代表値の選び方は? 講義では、データの代表値として「単純平均」「加重平均」「幾何平均」「中央値」があること、そしてデータのばらつきを示す「標準偏差」の重要性を改めて認識しました。どの平均値を用いるかは、分析の目的に応じて選ぶ必要がある点も印象的でした。 必要な基礎理解は? 普段の業務では、無意識のうちにデータ収集やグラフ化を行っていたため、なぜそれが必要なのかを体系的に学ぶことができたのは大変有意義でした。講義を通して、さまざまな角度からデータを評価できる手法を身につけることができました。 多角的評価の理由は? また、クライアントや社内のデータを用いたマーケティングやプロモーションの計画では、ピクトグラムや棒グラフで全体感を把握した上で、単純平均だけでなく「加重平均」「幾何平均」「中央値」「標準偏差」などを組み合わせ、多面的な視点からの分析が重要であると実感しました。

データ・アナリティクス入門

数字と仮説のドキドキ分析

どのデータが最適? 分析とは「分析は比較なり」という考えを基本に、どのデータを使い、どう加工し、何を明らかにするかを吟味する作業です。各種データに適した加工方法やグラフの見せ方が存在するため、やみくもに加工するのではなく、目的に合わせた手法を採用することが大切です。 目的と仮説は何? ビジネスデータの分析においては、データに取りかかる前に必ず「目的」と「仮説」を明確にする必要があります。プロセスは、まず具体的な仮説の設定から始まり、既存や新たなデータの収集、集計や代表値の算出、さらにはグラフを用いた加工を経て、聞き手が一目で理解できる形にまとめ上げるという流れで進められます。数字に基づくストーリーづくりが成功の鍵となります。 3C視点で何が見える? また、1つの事象を分析する際には、シンプルな課題であっても市場・競合・自社という3Cの視点を用いることで、当初は見落としていた要素が浮かび上がる可能性があります。意識的に3C分析に基づいて仮説を抽出することは、グループワークを通じて他者の視点を取り入れ、個人の思考力の限界を補いながら精度を高める効果的な手法と言えます。

「比較 × 基本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right