データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

データ・アナリティクス入門

多角的仮説から導く成功の鍵

なぜ仮説を複数持つ? まず、常に複数の仮説を立て、一つに決め打ちせず、各仮説が原因を多角的に網羅できるように意識することが重要です。どこに原因があるのか、何が原因なのかという点について、切り口を変えて考える必要があります。 比較指標はどう決める? 次に、仮説を検証する際は、何を比較の指標にするかを明確に決めた上で、どこに注目し、何と何を比較するのかという意図を持つことが大切です。 データ収集の方法は? また、データ収集においては、対象者(誰に聞くか)と方法(どのように聞くか)をしっかり考え、たとえ反論になり得る情報も排除されずに集めるよう努める必要があります。これにより、比較のためのデータが十分に得られ、偏りのない分析が可能となります。 仮説の使い分けは? さらに、結論を導くための仮説と問題解決を目指す仮説を明確に区別しながら取り扱うことが求められます。普段は特許情報やその他の情報を用いていますが、さまざまな立場(営業、技術、知財など)から情報を収集する際には、ネガティブなデータが除外されていないかを意識することが重要です。 議論で論点はずれる? 実際に、立場の異なる関係者による議論の場では、「課題」の共通認識が不十分なために、結論の仮説と問題解決の仮説が混同され、論点がずれてしまい、適切な結論に至らないケースが見受けられました。特に、人からの情報は各立場の主観が影響して、情報の取捨選択が無意識に行われることが多いため注意が必要です。 課題はどう分析する? このような背景から、「課題」が何で、どの仮説に基づいて何を分析するのか、また、仮説、比較の指標、意図がぶれないようにしっかりと管理する必要があります。仮説を早期に決め付けたり、先入観に頼ってとりあえずデータを分析したりする危険性があるので、まず観点を整理し、複数の仮説を立てた上で深堀し、必要なデータを洗い出して収集することが求められます。 決め付けはなぜ危険? さらに、結論を導く仮説にするのか、問題解決の仮説にするのかを明確にした上で、上記のプロセスに従い取り組むことが大切です。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

ひも解く!受講生の生の声

仮説検証はどうすべき? 問題を特定した後、解決プロセスでは、網羅的な仮説を立てた上で条件をそろえ、比較検証を行う必要があります。同時に、データを収集しながら根拠を明確にする手法も有効です。 上司の指摘は何を示す? また、講義中に説明された内容ではありませんが、課題を進めていく中で思い出した上司の指摘が印象に残っています。上司は、データから状況を読み解く際、さまざまな項目を網羅することは大切ですが、事実と推測を明確に区別すべきだと述べていました。実際、読み取った情報が事実であれば仮説の妥当性を確認できますが、もし推測であれば話が大きく変わるため、この点には十分に注意が必要です。 根拠データはどう確保? 社員の要望をアンケート結果から読み解く場合は、ひとつひとつの事象に対して根拠となるデータを具体的に示すことが求められます。たとえば、「この部分からこういうことが読み取れる」といった説明が必要です。 低正答率の真因は? また、教育受講者に実施する理解度チェック問題で正答率が低かった場合には、単に「理解不足だから」と結論付けるのではなく、問題解決プロセスを分解して検討することが重要です。具体的には、社内教育における教材とチェック問題の内容の齟齬、チェック問題自体の意図が上手く伝わらなかった可能性、あるいは回答者側の問題(例:注意不足)など、課題が生じたプロセスを一つひとつ切り分けて検証する必要があります。 ヒヤリハットの要因は? さらに、6月からは昨年度まとめたヒヤリハットに関するデータの分析が開始されます。ここでは、会計処理中に「冷やっとした」や「ハッとした」といったミスにつながりかねない状況を取りまとめています。データ項目の数や回答レベルが一定でないため仮説を立てるのは難しいですが、ロジックツリーを活用して全体を網羅的に整理し、what(何が)、where(どこで)、why(なぜ)、how(どのように)という観点から現状を整理し、考えの根拠を丁寧に示しながら、最終的にはhowの提案に結びつけていく方針です。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

アカウンティング入門

数字で見せるカフェ成功術

カフェ開業は何から始まる? カフェ開業をテーマにした実践演習では、大変有意義な学びを得ることができました。ミノルのカフェのコンセプトをもとに、どこにどのようなお金がかかるのかを考える過程では、まず企業や業態の特徴、ビジネスモデルを理解してからP/L(損益計算書)を読む必要性を再認識しました。 売上高の秘密は? また、なぜミノルのカフェが高い売上高を実現できているのか、両カフェのP/Lを比較することで、その背景にある理由を探ることができました。このプロセスでは、同業態の他企業の決算説明やニュースリリースなどから好調の要因を把握することが大切だと感じました。 費用削減の落とし穴は? コスト削減についても学びがありました。営業利益を向上させるために費用削減を行うと、時には売上高そのものが低下するリスクがあるため、自社の狙う層やコンセプトに立ち返りながら慎重に検討することが重要だと痛感しました。 現場改善の第一歩は? さらに、既存の飲食事業のP/Lを改めて確認する行動計画も整理できました。今回のカフェ事例を参考に、自店舗のコンセプト・業態・ターゲット層に照らし合わせながらP/Lを精査し、実際の店舗運営で現場の状況を確認します。P/Lの理解と現場の視察を組み合わせることで、コスト削減やスタッフ教育などの課題を抽出し、改善につなげる狙いです。 決算の全体像は? 今週の学習内容を振り返ると、連結決算短信や決算説明会の動画(特にP/Lの部分)を再確認し、数値面では前年同期比で売上高、営業利益、経常利益が伸びている一方、特別損失の計上により当期純利益が前年度比でマイナスとなっている状況を理解できました。減損損失や事業整理損といった用語には馴染みがなく、P/Lだけでは全体像がつかみにくいと感じました。簿記や講義が進むにつれて理解が深まると期待していますが、企業の連結決算を読み解く難しさを痛感しました。普段、決算短信をどのように確認しているか、さらっと理解するだけで良いのか、あるいはもっと勉強すべきか、アドバイスがあれば嬉しいです。

クリティカルシンキング入門

魅せる図表で学びが変わる

視覚化の意義は? 情報を視覚化することで、単なる文章だけでは伝えきれない大きな価値が生まれることを再認識しました。グラフやスライド作成においては、「伝えたい内容」と「表現方法」との整合性が非常に重要であり、まず何を伝えたいのかを明確にしてから、それに適したグラフを選定することが必要だと学びました。 作成の流れは? また、効果的に伝わる資料を作るためには、情報をただ並べるのではなく、受け手が探す手間を省けるように、流れに沿った丁寧な作成が求められます。具体的には、図、表、グラフを活用することで受け手の理解を促進し、目視で傾向や異常値を把握できるようにする点が大きな学びでした。 グラフ選定は? さらに、伝えたい内容やデータの性質に合わせたグラフの使い分けも重要です。たとえば、時間軸を示す場合は縦棒グラフや折れ線グラフ、異なる要素の比較には横棒グラフ、構成比の表現には円グラフや帯グラフを用いるのが効果的です。また、性質の異なるデータを一つのグラフで示す際には、右軸を利用する方法も効果的であると感じました。 資料工夫は? 資料作成の工夫としては、単にデータを示すだけでなく、作成者の意図や解釈を短いメッセージとして添えること、色彩やフォントの選択をメッセージの印象と合わせること、さらには過剰な装飾を避けることが求められます。情報の配置順序にも配慮し、視線の動きに沿ってキーワードや図表を配置することで、読み手にとって負担の少ない資料作りを目指すことが大切です。 データ反映は? 具体的なデータや実際の声を収集し、厳選した情報をスライドに反映させる努力も欠かせません。これらの学びは、社外向けのプレゼン資料や社内の報告文書、メールでの周知文書など、さまざまな場面に応用できると考えています。 説明の課題は? 振り返ると、以前は口頭での説明に頼ったために、表やグラフにおいて伝えたい内容が不明確になることもありました。今後は、状況に応じた手法を使い分け、相手にとって分かりやすい資料作成を心がけていく所存です。

戦略思考入門

戦略思考で拓く未来

会議で気づくポイントは? 物事の本質を見極め、目標達成に必要な打ち手をシステマティックに考える大局観とバランスの重要性を改めて実感しました。会議の場面では、誰が何に対して語っているかを明確にし、抜け落ちる観点がないかを俯瞰する意識が大切です。 分析して何を得る? また、マーケティングの基本フレームワークである3C分析、SWOT分析、PEST分析、バリューチェーン分析を活用し、自社の課題を多角的かつ具体的に洗い出すことの必要性を認識しました。短期的な成果と長期的なプラス効果とのトレードオフを踏まえ、ベターな選択肢を見極める姿勢が求められます。 分析比較の見どころは? 具体的な3C分析では、【顧客】としては従業員規模が小さく、特定の施策が十分に取り入れられていない点、【競合】としては戦略コンサルタントや大手金融チームの存在を踏まえ、【自社】では高価格帯でフルカバレッジを実現し、内定決定率が高い点が挙げられます。一方、SWOT分析においては、高価格帯や専門性、内定決定率、育成力が強みとされる一方、マッチングの効率性やスピード、自社採用のプロセス管理、マネジャーのスキルに改善の余地があることが示されています。機会としては人材の流動性やダイレクトリクルーティング、世界経済の変化、生成AIの進展が考えられ、脅威としては生成AIやAIを活用したエージェントの台頭が挙げられます。 未来予測の鍵は? さらに、上場している大手エージェントの中期経営計画や統合報告書などを生成AIで分析し、どのような3C分析やSWOT分析、バリューチェーン分析が行われているかを検証することが、今後の自社の取り組むべき課題を明確にする上で有益です。特に、ダイレクトリクルーティングや大手企業による社内転職が台頭した場合、5年後にどのような影響が生じるかを具体的に分析し、今後のプランニングに活かす必要があります。 計画の着実性は? このように、今後も全体を俯瞰しながら、具体的なアクションプランを策定して着実に実行していくことが重要だと感じています。

戦略思考入門

マネジメント力を磨く新しい発見の旅

最短ルートをどう選ぶ? 美容師になるための最短ルートは、美容専門学校に通うことだと考えます。このように、目指す目標を見失わず、適切な入試方式を選ぶことが大切です。同様に、会社に所属しながらマネジメント能力を高めるためには、グロービス経営大学院の改善された教材を学ぶことが最適だと思います。私は静岡市に住んでいるため、地方ではマネジメントを学ぶ環境が限られていますが、その分、通勤や通学のスキマ時間を活用して学ぶことができます。「グロービス学び放題」の教材が提供するスケールメリットを生かし、さまざまな業界の人々とZoomを通じて効率的に学ぶことができ、非常に有用だと感じました。この取り組みを通じて新しい発見があり、他の経営大学院と比較しても効率よく学べることを実感しました。 戦略と戦術はどう違う? また、「戦略」と「戦術」の違いについて、戦略は大局的で長期的な視点から考えるべきであり、戦術は短期的かつ狭い視点に重きを置くという点が参考になりました。今回のナノ単科では、大局的な長期視点を意識し、物事を俯瞰できる人材を目指して学習を進めています。 戦略思考はどう広げる? 一人の社員として、短期的かつ狭い視点で物事を考えがちですが、これからは戦略的な視点を取り入れ、長期的かつ大局的に物事を捉え、日々の設備導入や改善に生かしていきたいと思います。ライブ授業のアーカイブでは、歴史上の著名人たちの戦略について議論しており、まだ知らない偉人が多いことにも気づかされました。そこで、彼らについての書籍を読み、どのように戦略的だったのかを学び、自身の行動に取り入れたいと思います。 目的達成はどう実現? 行動を起こす前に、まず目的を明確にし、目的達成のための最短ルートを考える必要があります。限られたリソースを効率的に活用するためには、相手のスキルや設備の活用状況を把握することが重要です。新しい課題に取り組む際には、費用対効果を意識し、どこに資金を投入すべきかを慎重に検討し、それを戦略的思考で実践していきたいと考えています。

データ・アナリティクス入門

繰り返しが生む新たな発見

繰り返しの学びって? 全体を振り返ると、何度も同じ内容について整理し、記述を繰り返すことが学習において非常に重要であると実感しました。このプロセスの意味を学習テーマとは別に考えることで、新たな学びを得る機会となりました。 仮説疑問はどう? コースの初めに、「仮説とは何か」という疑問を持ち、データ分析のアプローチが状況により異なることを知りました。すでにデータが存在する場合と、データが無い場合では、分析に至る過程や組み立て方が大きく異なります。 既存データの活用は? 先にデータが用意されている場合は、目的を明確にした上で、データの特徴を探り、どの要素を比較するか、どのような傾向や動きを把握するかを平均、標準偏差、相関などの分析手法を活用して明らかにしていきます。その結果、見えてきた情報を体系的に整理することが可能となります。 無データの場合は? 一方、データが先に存在しない場合は、まず解決すべき課題や手がかりを見つけ、その観点に沿ったデータを収集します。具体的には、What-Where-When-Howという視点を順に確認し、マーケティングの基本的な枠組みを参考にしながら、適切なデータを取得し、課題を明確化するプロセスを進めます。その際、解決策や成功の可能性も同時に検討していきます。 記述重ねる理由は? また、同じ質問に何度も答え、記述を重ねる過程の意義についても改めて考えさせられました。学んだ内容が蓄積される中で、実際の業務にどのように適用できるかを具体的にブラッシュアップする必要があると感じました。 分析手法の見直しは? Q1では、分析に対する取り組み方を整理することができました。特にデータが既にある場合は、データを加工するための手法と知識が不可欠であることを再認識しました。しかし、今回のコースではその実践的な部分までは触れていなかったため、過去の振り返りと同様の記述となりました。今後は、実際に手を動かしてデータを扱う内容を学ぶ必要があると感じました。

アカウンティング入門

実例で感じる事業計画の力

コンセプトは守れてる? 事業計画を立てる際は、しっかりとしたコンセプトの下で、資金をどこに投入するかを見極めることが重要です。借入は利息を含めた返済が求められるため、借入を避けるだけにこだわってコンセプトがぶれると、顧客の期待とのギャップが生じ、事業全体の価値が下がるリスクがあります。コア・バリューを守ることが、事業計画の成功に不可欠です。 利益配分はどう? 具体例として、売上が500万円、原価率が30%、固定費(人件費や家賃)が150万円の場合、営業利益は200万円となります。この利益を以下のように資金分配することが考えられます。まず、借入返済に50万円を充て、金利負担の軽減と財務健全性の向上を図ります。次に、ブランド価値の向上や将来の収益性アップを目指して70万円を再投資に回します。売上の変動に備え、30万円を内部留保し、あとはオーナー報酬・配当として50万円を還元します。 他の資金調達は? 全体的に、事業計画における明確なコンセプトと具体的な資金分配例がよく示されています。ただし、借入以外の資金調達方法についても検討することで、さらに理解を深めることができるでしょう。 資金と顧客はどう? また、資金繰りと顧客価値のバランスや、借入以外の資金調達の選択肢にも目を向けることが今後の課題といえます。事業計画を実行に移す際は、具体的なリスク管理プランにも注力すると良いでしょう。 資料を見直すべき? さらに、業務資料の見直しにおいては、顧客視点での分かりやすさが求められます。例えば、収益性(利益率や資金の回り方)を図表で示し、健全な経営が可能であることを説明する方法が効果的です。見直し案として、3期比較による損益構造の可視化、利益率のトレンド分析、資金の流れをタイムライン図で示すといった工夫が考えられます。また、資金分配シナリオの比較(保守型、成長型、高リスク型)や投資回収シミュレーションについても、表やグラフを用いて視覚的に示すことで、リスクと収益性のバランスがより明確になるでしょう。
AIコーチング導線バナー

「比較 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right