クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

クリティカルシンキング入門

目的意識で切り拓く日々の学び

目的を忘れたくない? 行動や結果の改善にばかり意識が向くと、そもそもの目的を忘れてしまいやすいです。しかし、クリティカルシンキングの受講においては、常に受講目的や業務の目的を念頭に置きながら、日々の学習を積み重ねることができました。 問題解決の秘訣は? なぜこの問題を解決するのか、解決する必要があるのかといった、目的に立ち返る姿勢で日々の業務を整理しました。進むべき方向性を定めた後は、どのように解決すべきか、これまで解決が難しかった原因は何かをしっかりと捉え、具体的な打開策を考えることに努めました。 毎週の実践成果は? また、毎週テーマを決めて実行することで、インプットがアウトプットに変わり、アウトプットがさらにインプットを磨くというサイクルを意識的に積み重ねました。常にどの方向に進むための日々の習慣を作る目的を忘れずに取り組むようにしました。

クリティカルシンキング入門

会議が迷走しない視覚化テクニック

日常業務における課題意識は? 日常業務や会議において、「何のためにやっているのか」「何が課題であるのか」を忘れてしまうことが多いと改めて感じました。適切な問いを立て、それを押さえ続けながら業務を遂行することの大切さを理解しました。 業務の視覚化が必要な理由は? 業務上の課題に対しては、何が課題なのかを考え、それを明確にしたうえで向き合うことが重要です。しかし、会議などの場面では話がそれることが往々にしてあります。そうした場合、視覚化し、目的がぶれないように周知することが求められます。 プロセスをどう視覚化する? 問いを立て、明確にし、それを押さえ続けること。このプロセスを視覚化し、個人的にもまた他者と関わる仕事の場合には他者にも視覚化し周知することで、目的の達成や業務効率化につながると感じました。実際に実践し、行動に移していきたいと思います。

データ・アナリティクス入門

比較と仮説でつくる現場改善の秘訣

目的と仮説の効果は? 今回学んだ「目的を持った比較や仮説に基づく分析」は、土木現場における工期短縮、コスト管理、安全対策の見直しに大いに役立つと感じています。たとえば、過去の類似現場と比較して資材使用量や作業時間に差が見られた場合、その背景を詳しく分析することで無駄や非効率を特定し、具体的な改善策を立てることが可能です。 記録と検証の効果は? まずは、各現場の作業時間、コスト、事故件数などのデータを日常的に記録・整理し、月単位で過去の現場と比較する習慣を身につけたいと考えています。特に大きな差が見られる項目については、「なぜこのような結果になったのか?」という仮説を立て、関係者と意見を交わしながら原因を徹底的に究明し、改善策を現場に反映させていきます。小さな気づきも見逃さず、分析を日常業務に取り入れていくことを意識して行動していきたいと思います。

データ・アナリティクス入門

仮説で読み解く学びの軌跡

仮説はどう進める? 業務においては、まず仮説思考を用いて検証を行います。複数の仮説を立て、できるだけ網羅性を持たせることが求められます。その上で、必要なデータを抽出し、仮説を検証します。仮説を裏付けるデータだけでなく、反証するデータも同時に集めることで、その説得力が増します。また、仮説をさらに深堀りして広げる必要があります。 データ不足の理由は? しかし、実際の業務では、仮説を立てても検証可能なデータが十分に得られず、結局その正否が判断できないケースが多々発生します。できるだけ具体的なデータを抽出して検証を行いたいものの、網羅的に仮説を立てるのは比較的容易であっても、その中から正しいものを選び出す判断は難しいです。特に、仮説を裏付けるデータが不明瞭な場合、裏付けするデータも反証するデータも得られず、結局何も行動できない事態が多く生じています。

リーダーシップ・キャリアビジョン入門

実践が育む信頼のリーダーシップ

フォロワー信頼はどう増す? フォロワーから信頼されるリーダーシップを発揮するためには、行動、能力、意識という3つの要素を意識しながらスキルを向上させることが大切だと感じています。具体的には、ビジョンの提示、夢の共有、決断力、論理的な説得力、加えて責任感や誠実さ、そして相手の意見に耳を傾ける姿勢が成長項目として挙げられます。 論理説明で何が変わる? また、論理的に説明する能力は、フォロワーへのリーダーシップと決断力を支える重要な要素です。不透明な先行きが予想される業務においても、この能力を意識することで、より適切な判断ができると考えています。自分一人の知識やスキルだけではカバーしきれない状況もあるため、フォロワーの声にしっかりと耳を傾け、互いに意見を交わす双方向のコミュニケーションを大切にしながら、傾聴力の向上にも努めていきたいと思います。

クリティカルシンキング入門

ライブ授業で得た問いの術

問いのマトリックスは? ライブ授業で教わった問いのマトリックスが非常に印象に残りました。左右に原因と打ち手、上下に抽象的なものと具体的なものが配置されており、とても分かりやすい構造です。良い問いを考えるためには、①状況を見る、②原因に着目する、③問いを残すという視点が重要だと理解しました。この学びは大変意義深いものでした。 組織と業務の課題は? 具体的な行動①として、現状、自社の組織構成と業務フローの適合性に課題を感じています。まずは状況を整理し、筋の通った問いの検討から取り組んでいきたいと考えています。 システム入替えの負荷は? 具体的な行動②では、システムの入れ替えが予定されているため、社員にできるだけ負荷がかからない方法を模索しています。こちらも、まずは現状の整理と問いの組み立てから進めていく予定です。

クリティカルシンキング入門

視点を広げて苦情対応を改善する方法

MECEはどう捉える? MECEに分解することについては言葉で知っていたものの、実際に考えると難しい部分もあると理解しました。全体像を丁寧に把握することが重要であると学びました。様々な観点から数字を分析し、漏れや重複がないか確認しながら、日々の業務に活かしたいと思います。 苦情対応の現状は? 私は苦情対応を業務で行っており、年間で約50~60件ほどの苦情を受け取っています。これまで、年間傾向の分析が疎かになっていたため、この分析を生かして品質改善に努めたいと考えています。 改善の具体策は? まず、苦情を製品別、内容別、製造所別など、様々な観点で集計・分析します。そして、そこから改善点を見つけ出し、製品品質の向上につなげていきたいと思います。また、分析結果を基に改善計画を立て、具体的な行動に移していきます。

クリティカルシンキング入門

ひと手間で見つける学びのヒント

どうして数字の意図は伝わらない? 数字だけのデータは、生の状態では情報の意図が十分に伝わらないことがあります。少し手を加えるだけで、見やすさが向上し、「何をどうすればいいのか」が明確になります。 手間を加える意味は何? ひと手間をかけることで、その後の作業時間を大幅に短縮でき、目的に合わせた行動を起こしやすくなります。 どのようにデータを分析する? コンテンツの企画、視聴状況の分析、ユーザー満足度の調査といった分野においても、このアプローチは有用です。どの業務においても、現在あるデータをどのように分析し、他にどのような数字が必要かを常に考える姿勢が大切です。 補完情報は必要? また、目の前の数字だけで十分なのか、それとも他に補完すべき情報があるのかを冷静に検討することが求められます。

データ・アナリティクス入門

ゼロから攻略!知識整理とデータの力

ゼロからどう始める? ケーススタディーに取り組む際、これまでのような指針がない状態でゼロから考えると、どこから手をつけたらよいのか迷ってしまうことが多いと感じました。そのため、どの状況でどの分析手法が有効なのかを再度整理し、自分の知識や経験を明確にしておくことで、このハードルを乗り越えられると考えています。 業務の効果をどう見る? また、日々の業務では求められるKPIの達成に向けたマネジメントが中心となりがちです。その中で、現在の活動が本当に目的に沿ったものであるか、またはより大きなインパクトを与える方法はないか、成功しているチームがどのような行動を取っているのかを考えるようになりました。そこで、データ分析を用いて客観的な視点からその効果を示すことで、より効果的な業務の進め方を模索していきたいと思います。

データ・アナリティクス入門

仮説実践!即断で未来を掴む

効果測定は本当に? A/Bテストの実施により、短期間で効果測定が可能であることを実感しました。一方、単にデータ収集に時間をかけるだけでは、必ずしも問題解決には結びつかないということが分かりました。 分析時間は適切? 業務を進める際、初めはデータ分析から始めることが多い中、分析に時間をかけすぎる傾向があると感じています。一定量のデータが得られた段階で、迅速に仮説を設定し、追加の分析が必要かどうかを判断するか、実行フェーズに移行するかを見極めることが重要だと学びました。 行動開始のタイミングは? このコースを通じて、仮説に基づき行動に移すタイミングの大切さを再認識しました。今後は、データ分析に没頭しすぎず、適宜ストップしながら、仮説思考を軸にした実践的なアプローチを心がけたいと思います。

リーダーシップ・キャリアビジョン入門

共に育む自然なリーダーシップ

リーダーの本質はどうなる? リーダーシップは、特別な才能ではなく誰にでも備わっているものであり、状況に応じて自然に発揮されるものだと実感しました。何よりも、リーダーとなるためにはフォロワーが存在し、共通の目標を持って行動することが必須であると感じます。 方向性はどう共有する? 私自身は、まず自分が思い描くイメージをできるだけ具体的に示し、部下や同僚と同じ方向性を共有することを心がけています。その結果、皆が何をすべきかが明確になり、各自が行動に移しやすくなると考えています。 障害はどう解決する? また、共有した目標に対して生じる困難や不明点があった場合は、積極的に意見を聞くようにしています。これにより、障害となる要因を迅速に取り除き、スムーズな業務遂行につなげることができると実感しています。
AIコーチング導線バナー

「業務 × 行動」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right