データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

ロジックツリーで切り拓く未来

ロジックツリーは何故? ロジックツリーは、問題の本質を的確に把握するための有力な手法であると実感しています。事前にロジックツリーを用いて課題の所在を整理することで、複数ある課題のうち、どの部分に対して施策を講じるべきかが明確になり、もし施策に効果が見られなかった場合でも、別の課題に切り替えて対応できると感じています。 地域課題対策のカギは? 私の業務には地域課題へのコンサルティングも含まれるため、今後もこの手法を積極的に活用していきたいと考えています。現在、多くの地域が人口減少に悩まされており、その背景には出生率の低下や若者の流出など、複数の要因が複雑に絡み合っている状況です。 根本原因は何処? さらに、根本的な原因として、働く場所や遊ぶ場所が十分に確保されていない点、子育て支援の不十分さや若者の収入状況の厳しさも挙げられます。このような各要因をロジックツリーで分析し、具体的な施策を立案することが、効果的な対策の実施につながると感じています。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

A/Bテストで見える戦略のヒント

どうして問題が起こる? 問題の原因を探るためのアプローチについて学び、これまでの仮説中心の手法から一歩踏み込んだ問題解決の方法を理解できました。 A/Bテストで何がわかる? 中でも、A/Bテストを用いて施策の効果を比較し、仮説検証を繰り返すことの重要性を学びました。条件をできるだけ揃えて比較することで、より正確な評価ができる点に納得しました。 販売戦略にどう影響? 実際、あるスーパーマーケットの販売戦略を考える際にも、A/Bテストの手法は有用だと感じています。どの商品がより売れるのか、また企画がどの程度影響を与えるのか、複数の案を出して検証することは、戦略構築に大いに役立つと思います。 工数と時間の見直しは? ただし、A/Bテストを実施する際の工数と時間の按分については、今後さらに検討が必要だと感じました。これらの点を踏まえ、実際の業務にどのように活かすかを考えるうえで、引き続き学びを深めたいと思います。

マーケティング入門

情緒で輝く価値発見の瞬間

体験の価値は伝わる? 最近、単に商品そのものの魅力だけでなく、その周辺の体験やストーリーが付加されたマーケティングの重要性を実感していました。しかし、今回の授業を通じて、その考え方の重要性を改めて感じることができました。 なぜ情緒を求める? 普段の生活で必要なものを購入する際には機能的な価値が重視されますが、プレゼントや自分へのご褒美の場合は、機能性を超えて情緒的な価値が求められると感じます。いつもよりも上質で、少し高価なものを選ぶ傾向にあるのは、そのためだと考えられ、特に高級ブランドの施策にはその狙いが反映されているように思います. 情緒の活用はどうすべき? 私が扱うIT製品も機能面での価値は十分にありますが、これまで情緒的な価値に注目する機会は少なかったと自覚しています。一方で、営業が上手な人たちは情緒的な価値を巧みに活用している印象を受けました。今後は、情緒的な価値にも意識を向け、業務に生かしていきたいと考えています.

戦略思考入門

フレームワークを活かして差をつける学び方

顧客視点ってどう考える? 施策を検討する際には、徹底して顧客の視点で考えることが大切であると感じました。また、広い視野を持つことが求められると共に、その施策が無理なく実現可能であり、差別化として持続可能であるかを意識したいと思います。 フレームワークはどう活用? 今回の動画で学んだフレームワークについては、以前から知っているものや使ったことがあるもの、馴染みのなかったものがありました。フレームワーク自体の説明に加えて、使用時のポイントや、陥りがちな悪い例も学ぶことができました。これらの知識を活かし、業務で施策を考える際には、まずフレームワークを使用することから始めたいと思います。 多忙中、どう実践する? 業務が多忙であっても流されず、来週中にはフレームワークに触れる機会を意識的に設けたいと思います。その際には、業務の隙間時間ではなく、充分な時間を確保し、動画を振り返りつつ正しくフレームワークを活用することを心掛けます。

データ・アナリティクス入門

自分を動かす学びの羅針盤

全体像はどう把握? これまで学んだ分析についての総括を通して、その全体像を把握することができました。特に、今後取り組むべき内容が整理され、自分が実践すべき具体的なアクションが明確になったと感じています。引き続き学びを継続する重要性も再認識しました。 分析はなぜ必須? また、業務の基本として「分析」を位置づけ、あらゆる場面でデータ分析が必要であることを意識するようになりました。同時に、「仮説思考」がデータ分析だけでなく、全ての施策を検討する際に欠かせない考え方であることを実感し、今後も意識的に取り入れていきたいと考えています。 実践をどう積む? さらに、小規模な事例を通じた実践を重ねることで、現場でのデータ分析の経験を着実に積み上げていくことが求められると感じました。今回学んだ知識を、自分なりに職場のメンバーにフィードバックする機会を設けることで、他者に伝えられるレベルまで理解を深めていきたいと思います。

データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

クリティカルシンキング入門

イシュー共有で本質に迫る

イシューの意味は? 「イシュー」とは「いまここで答えを出すべき問い」であり、その重要性を実感しました。問いが誤ると論点がずれ、共通認識が形成されなくなるため、イシューを共有し本質を意識することが、具体的な課題解決や施策につながると考えています。 課題共有はどう進む? IT業界においては、顧客からの課題相談が頻繁に寄せられるため、まずはイシューを明確にして共有することから取り組みたいと思います。共有をせずに解決策だけを模索すると、後に認識の齟齬が生じ、根本的な課題解決につながらない恐れがあります。 本質解決は可能か? 業務では、本質的な課題が誤ると顧客が期待する解決が果たせず、結果として不適切なITシステムが提供される恐れがあります。そのため、単に解決策のみを提案するのではなく、イシューを踏まえた本質的な課題解決を追求することで、真に必要なITシステムの提供が可能になると考えています。

戦略思考入門

学びから戦略への第一歩

フレームワークは何? 3C、SWOT、バリューチェーンなどのフレームワークを学ぶ中で、外部・内部分析の基礎を理解することができました。具体例も交えられており、とても分かりやすかったです。今後は、さらに多くのフレームワークの知識も広げていきたいと考えています。 業務改善のヒントは? 一方、学んだフレームワークをすぐに自分の業務に適用してみたものの、分析の粒度が粗く、経営の成功に直結する具体的な施策を打ち出すのは難しいと感じました。専門家同士が集まり、内部・外部の分析を行うことで、より高度な施策の立案が可能になるのではないかと思います。 戦略再考はどう? 今後は、フレームワークの基礎を踏まえた上で、自社の経営戦略の資料を再度確認し、戦略検討のプロセスや考え方を自分なりに学び直していきたいと考えています。まとまった時間が確保できる長期休暇などを活用し、じっくりと身に付けていくつもりです。

データ・アナリティクス入門

データが照らす改善の道

ABテストの意義は? ABテストを通じて、単にAかBを選ぶのではなく、前提条件を統一した上で比較・検証することが次の施策につながると感じました。問題のある箇所については、プロセスごとに分解し整理することが大切だと改めて認識しました。 数字で何が分かる? また、具体的な数字を取得することで、試行した打ち手がどのような効果をもたらすかを明確にしたいと思います。サイトに限らず、アンケートなどを活用して課題を抽出し、想定される項目のほかに自由記述も設けることで、定量データとして予想外の回答が得られるかどうかを確認できる工夫が必要です。 FAQ改善の狙いは? 業務面では、FAQサイトの問題箇所を特定し、改善案に基づいた比較テストを実施することが重要です。過去のPV数などのデータを把握し、変更後の数値の変化を確認することで、PDCAサイクルを効果的に回していきたいと考えています。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

「業務 × 施策」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right