デザイン思考入門

スピードでカタチに!学びの実験

前職はなぜ意義ある? 前職ではSEとしてプロトタイプを作成し、フィードバックを受け取るサイクルを繰り返していたことを思い出しました。現在の業務では同じような機会は少ないですが、その経験を活かし、使用中のツールの改修や新規作成に取り入れていきたいと考えています。また、モノ作りのみならず、業務フローの改善にも生かす意欲があります。 フィードバックの鍵は? 実践までは至っていませんが、実践演習を通して、まずアイデアを形にし、ユーザーからのフィードバックを受けるそのプロセスの繰り返しが、よりユーザーが求めるものを作り出す鍵であると感じました。さらに、プロトタイプの種類によって得られるフィードバックが異なるため、何を目的にするのか、現在のフェーズはどこにあるのかを踏まえた上で、プロトタイプの作成と検証を進めることが重要だと考えています。 スピードはなぜ大切? とにかく、形にすること、そしてスピードが大切であると実感しています。形にすることで自分の考えが整理され、ユーザーやメンバーからコメントやフィードバックを得やすい状況が生まれます。そのサイクルをスピーディーに回すことが成果につながると感じました。また、ユーザーテスト前に評価基準を設定しておくことで、課題を見失わない工夫も大切だと実感しました。

マーケティング入門

顧客視点で引き出す満足感の秘訣

顧客ニーズをどう理解する? マーケティングとは、顧客のニーズを理解し、それに基づいた満足を創造する仕組みを構築することです。顧客思考が重要なのは、顧客が本当に欲しいと感じる魅力的な商品やサービスでなければ、売上を確保できず、結果として報酬を得ることができないからです。 幅広い「顧客」とは? ここで「顧客」とは、広義には顧客、同僚、上司など、関わる全ての人を指します。相手の立場に立って物事を考え、行動を起こすことで、彼らを満足させられるようにすることが求められます。 マーケティング思考の活用法 具体的には、顧客や上司へのプレゼンテーションや提案において、相手が満足できるものを作り出すためにマーケティング思考を活用します。また、社内のミーティングや議論においても、マーケティングの論理構造を活用し、相手のニーズを正しく把握することが重要です。 効果的なプレゼンを目指すには? 相手の立場に立ってニーズを理解することから始め、魅力的なプレゼンができるよう日々スキルを向上させる必要があります。そして、相手に納得感を持たせるために、論理構造をしっかりと学ぶことも大切です。最後に、自分自身の強みを伸ばし、他者とは異なる魅力的な人材となることで、自身を強力な武器として持つことができます。

データ・アナリティクス入門

仮説思考で業務が変わる瞬間

仮説の幅は広い? 仮説を考える際は、正しい答えを一つだけ見つけることが目的ではなく、論点に対する仮の答えとしてフレームワークを活用し、幅広い可能性を検討することが大切だと感じました。決め打ちに陥らず、常に複数の仮説を立てる姿勢が重要です。 仮説の意義は? また、仮説を考えることには、検証マインドの向上による説得力の増強、問題意識の向上、対応スピードのアップ、そして行動の精度向上という4つの意義があると学びました。これらの点は、データ分析にとどまらず、日常の業務においても活かせる有用な考え方だと思います。 難しさはどう? 仮説思考というと難しそうに感じるかもしれませんが、普段の業務で些細な疑問を感じたときに自分なりの原因を考え始めているのであれば、実はすでに仮説思考を実践しているのだと実感しました。今回学んだ問題解決のプロセスを参考に、日々の業務に仮説思考を取り入れることができそうです。 小さな課題は? まずは、短時間で取り組める小さな課題に対して、意識的にフレームワークを活用し仮説の幅を広げることから始めたいと思います。その上で、分析時の適切なグラフ選定や結果の分かりやすいビジュアル化といった、今まで苦手としていた分野の改善にも取り組んでいこうと考えています。

クリティカルシンキング入門

問いが導く自己成長ストーリー

問いの重要性は? 「問い」から始めるという視点が、今回の学びの中で特に印象に残りました。まず、常に「今何を考えているのか」を自分自身に問いかけることで、単に身近な情報に頼るのではなく、目的や目標を明確にしながら考える重要性を再認識しました。 自己評価の見方は? また、思考のプロセスにおいては、自分の考えを客観的に評価する「もう一人の自分」を育てることが大切だと感じました。具体と抽象の動きを意識的に行うことで、より広い視点からアイディアを整理・展開し、最終的に論理的な結論に導くための自己チェックが可能になります。 実践から何を学ぶ? 具体例としては、week1で実践した「自分の思考をチェックするもう一人の自分を育てる」と「具体と抽象のキャッチボール」を通じて、発想を広げる効果を実感しました。また、week6に学んだ「今何を考えているのかを自問する」手法は、常に問いを軸に考える習慣の大切さを改めて感じさせるものでした。 議論はどう進む? 普段の議論や施策の検討においても、まずは明確な問いを立て、その問いに沿って具体的なアイディアと抽象的な概念を行き来させながら自分自身の考えをチェックすることは、よりクリエイティブで実効性のある結論にたどり着くための有効な方法だと感じます。

デザイン思考入門

プロトタイプで未来を変える

録画での学びは? 参加できなかったため、録画で学びました。その中で「バックパックを作る」という課題について、実践を通して単に改良方法を考えるだけでなく、既存の考えにとらわれない発想の大切さを実感しました。 利用者の意見は? また、テストを実施することで、自分にはない視点を利用者からフィードバックしてもらえるという気づきがありました。特に生成AIの活用という視点は非常に参考になり、早速利用してみたいと感じました。 プロトタイプで変化は? 一番の気づきは、どうしても主観になりがちな点を、デザイン思考のプロセスに従ってプロトタイプを作成することで、ユーザー(メンバー)からのフィードバックを得られ、新たな視点が生まれるということです。現行の業務ルーチンに対しても、当たり前のプロセスに疑問を持ち、変革する際にはメンバーや有識者にプロトタイプを提示し、違った見方を取り入れる可能性があると考えました。 改善の進め方は? 業務プロセスやツールの改善においても、手順を踏んでプロトタイプを作成することの重要性を実感しました。時間がないと思いがちですが、改善サイクルを迅速に回すことが大切だと気付かされました。自分はツールの作成・改善にとっつきやすいため、まずはその点から実行してみたいです。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

クリティカルシンキング入門

苦手意識克服!伝わる資料作成の極意

伝える資料のポイントは? スライド作りに苦手意識があった私にとって、今週の学びは非常に大きな収穫となりました。顧客への提案資料や、社内報告資料・戦略書の作成に取り組む中で、伝えるべき情報が整理され、視覚的な要素とメッセージの整合性がいかに重要かを実感しました。 グラフの使い方は? 資料作成では、グラフや図の使い方が鍵となります。グラフにはタイトルを必ず付け、始点はゼロからに設定し、単位も明記することが基本です。例えば、時間軸の推移を示すには縦のグラフ、傾向や推移を見せるためには折れ線グラフ、各要素ごとのデータを表す際には横の棒グラフを使用するのが効果的です。また、視線が左から右、上から下に動くことを意識して、情報が読み手にとって探しやすい順序で配置されているかがポイントです。 ビジネス文章はどうする? さらに、ビジネスライティングの技術は社内外のコミュニケーション全般に役立ちます。顧客へのメールでは、タイトルと本文が明確で、相手に情報を探させないように構成することが大切です。社内メールにおいては、習熟度に関係なく誰でも理解できる文章を心がけ、社内報告資料は現状を図表を用いながら丁寧に説明することを意識しています。これらの学びを実践することで、より効果的な情報伝達を目指していきます。

データ・アナリティクス入門

仮説と現場で読み解く数字の物語

現場で何が起きる? 平均値などの代表値を把握するだけではなく、現場で実際に何が起きているかを想像しながらデータに向き合うことが大切です。そのため、自分自身で仮説を立て、仮説検証型で分析を進めることが求められます。分析の目的に応じて比較する対象も変わるため、たとえば「夏の気温は本当に上昇しているのか」という問いに対して、単純に1年前のデータや他の地点のデータと比較するだけでは、十分な答えは得られにくいでしょう。 ビジュアルで何が分かる? また、代表値の理解をより精緻なものにするために、データのビジュアル化を試みることが重要です。第三者に伝えるときだけでなく、自分自身で数値を分析する際にも、数字だけでは見逃しがちな現場の情報に焦点を当てるため、ビジュアル化の活用を心がけましょう。 AI活用はどう役立つ? さらに、医療施設ごとの売上や従業員ごとの活動履歴など、大量かつ複雑なデータに関しては、定型的な加工に陥りやすい傾向があります。まずはデータの分布を把握するためのビジュアル化を行い、分析の目的に合ったデータの特徴を考察する時間を確保することが推奨されます。このプロセスにはAIの活用が有効であるため、迅速に作業に取り掛かれるよう、使用するプロンプトをあらかじめ保存しておくと便利です。

クリティカルシンキング入門

問題解決の視点を広げる学び

本質は何だろう? 問題解決を行う際には、まず何が問題なのかをしっかりと定義することが重要です。問題が本当にその部分にあるのか、あるいは「そもそも」といった観点で見直してみることも大切です。その後の分析やアクションを行う際にも、常に問いを意識することで、本質から逸れることなく、もしズレが生じた場合には適切に軌道修正することができます。 対策はどう考える? たとえば、チームに人手不足という問題がある場合には、人員を増やすという対応だけでなく、同時に生産性の向上や仕組みの効率化を図ることが求められます。また、システム操作が煩雑で非効率だと感じた場合には、システムの改修を行うだけでなく、補助的なツールや直感的に理解しやすいマニュアルの整備を通じて生産性の向上を目指します。こうした問題を複数の視点から捉え、それぞれに合ったアプローチを実施することが重要です。 気づきはどう引き出す? また、メンバーに対して問いの重要性を示すことで、彼らから新たな気づきを得ることができるかもしれません。定期的に自分の活動を見直し、無意識のうちにバイアスがかかっていないかを確認することも重要です。他の人から異なる視点や意見を求め、自身にはなかった新たな問いを取り入れることで、自分自身の視野を広げることができます。

戦略思考入門

限られた時間の中で咲いた知恵

どうやって解答導く? グループワークで問題が提示された際、限られた時間の中でどの視点からアプローチすれば、求められる答えにたどり着けるのかを考えながら取り組みました。この経験は、戦略的な思考のシミュレーションとして振り返ることができます。 意見は均等か? ショートワークでは、全員が均等に意見を述べることが求められました。また、短い時間でチーム全体の意見をまとめ、発表できる人材の役割分担も行われました。このプロセスは、自分自身に何ができるのかを客観的に見つめ直す貴重な機会となりました。 チームリーダーの役割は? 私は対内外でファシリテーションの役割を担うことが多いため、相手の立場や能力を明確にするためのコミュニケーションを大切にしています。その上で、まずは全員が目指すべきゴールやその道のりを、どの立場のメンバーにも理解できるように発信し、情報共有を徹底していくことを意識します。そして、必要な時に軌道修正を行い、最適な時間と手段で目標達成に向けてチームを導いていきたいと考えています。 資源管理の秘訣は? また、人的資源、物的資源、そして時間をバランスよく管理する視点も重要です。そのため、これらの要素をどのように切り口として捉えるか、そのコツを学び、実践していきたいと思います。

データ・アナリティクス入門

現実と夢のギャップを楽しむ学び

目的意識はどうする? 常に目的を意識することが大切です。ありたい姿を明確にし、現在地を把握した上で、そこからのギャップを見出すことが出発点となります。その差分に対して必要な課題を洗い出し、解消のための具体的な打ち手を決定し、実行計画を立てて自律的に取り組むプロセスは、学習や自己成長の場面でもシンプルに機能します。 アウトプットの考察は? また、様々なアウトプットに触れる際には、どのデータがどのような目的で、どのように加工されているのかを考えることが重要です。これにより、他者のアウトプットから自分なりの工夫やアイデアを吸収し、活かすことができます。 顧客提案をどう見る? 顧客提案の際には、次のシナリオ設定のフレームを基本として実施します。まず、目標や目的の目線を合わせ、現在地を確認し、目指すゴールを共有します。次に、課題を共有し、解決手法の提案とその効果検証方法を確定させ、具体的な打ち手を実施します。最後に、全体を振り返ることが、次への改善につながります。 自己評価は何が肝心? さらに、期ごとの自己の振り返りや査定評価資料の作成にも、同じフレームワークが生かせると考えられます。日々の努力の積み重ねが明るい評価へとつながることを意識し、着実に成果を上げることを目指しましょう。

データ・アナリティクス入門

数字に魅せられる!学びの実験室

数値とビジュアルの関係は? データ比較の際、数字に注目し、その数値をビジュアル化することで、数式に基づく関係性を把握することの重要性を学びました。大量データの分析では、目的を明確にした上で仮説を立て、データ収集を経てその検証を行うプロセスが大切であると感じました。また、分析する際には、単純平均だけでなく加重平均や中央値、さらには散らばりを示す標準偏差といった代表値を活用することで、より深い理解が得られると実感しました。 散らばりの意味は? 特に、データの散らばりに注目することで、数値の乖離をどのように防ぐかという点が印象に残りました。数値の集約や分布の理解は、分析の精度向上に大きく寄与すると考えています。 売上推移の分析は? 実績報告書の作成においては、単月売上や累計売上の推移を把握するため、商品別や販売先別の分析が有効であると思います。各取引先に対する実績や、特定商品の業績分析を行う際には、加重平均や中央値を用いて売上の平均成長率を求め、業績の変動理由について目的に沿った仮説を立て、データ収集と検証をする手法が有用だと感じました。 分布の理解は? また、正規分布の説明では、標準偏差に関する具体例の一部が分かりにくかったため、さらなる理解を深める必要があると感じました。

「重要 × 大切」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right