データ・アナリティクス入門

自ら選ぶデータ分析の真髄

データ分析から何が学べる? データ分析を通じて、体系的な課題解決方法を学びました。実際に扱うデータは自ら補完する必要があるため、比較意識を持って必要な情報を選定するスキルを高めたいと考えています。 応用力はどこから来る? また、業務全般に応用可能なフレームワークや思考パターンを習得できたと感じています。単一の業務でなく、思考が求められる多くの場面で今回の学びを実践し、常に意識を持って取り組んでいきたいと思います。 課題対策は具体的に? 違和感や課題に直面した際は、確認を含む仮説の立案やプロセスの細分化を意識して行いたいです。分析フェーズでは、比較を通じて実証を目的としたデータ抽出や多角的な視点からの提案を心掛け、より具体的な検証ができるようになりたいと考えています。

リーダーシップ・キャリアビジョン入門

若手育成でプロジェクト成功への道

仕事を任せる重要な理由は? 仕事を任せる際は、まずその背景や目的を伝えた上で一度任せてみることが重要です。そして、適切なタイミングで進捗を確認し、必要に応じて軌道修正を行いながら最終形を目指します。振り返りも定期的に行い、良かった点や課題となった点を整理することが大切です。 若手へのアプローチは? モチベーションの上がり方は個人によって異なるため、それぞれに合ったアプローチを心がける必要があります。特に新入社員や若手メンバーに対しては、この方法が効果的に活用できそうです。DX推進部に異動したことで若手メンバーとの関わりが増え、自分がまとめ役になることが多い中で、これらの方法を実践することでメンバーの成長とプロジェクトの成功に貢献できると感じています。

データ・アナリティクス入門

あなたも変われる学びの瞬間

データをどう活かす? 分析を行う際は、常に目的を意識しながらデータと向き合うことが基本です。データは単なる数字ではなく、素材と捉え、適切な調理方法や飾り付けで仕上げるように結果の表現手法を工夫する必要があります。各データの特性に合わせた分析プロセスを経ることで、他社にもわかりやすく咀嚼・理解される結果を得ることができます。 サポート状況はどう? また、作成されたサポートケース数の増減やカスタマーサーベイの結果を、製品、顧客、担当エンジニアなど複数の要素を組み合わせながら分析します。こうした取り組みによって、サポートチームが健全にオペレーションできているかを確認し、もし課題が見つかった場合には、その解決に向けた具体的なプランの策定も行います。

戦略思考入門

捨てる決断が未来を変える

捨てる判断の意義は? 捨てることを選択する重要性と、その判断基準について再確認できたと感じています。また、マイナス思考を改める必要性についても学びました。戦略を考える際には、単に利益だけでなくROIも意識し、昔からの惰性に惑わされずに判断することが大切だと考えています。さらに、苦手な分野は適切な人に任せる発想を持つことも重要です。 苦手克服の手法は? 一方で、捨てることや断ることが苦手な自分自身の性格や、業務が多様化している現状に直面し、優先順位を付けながら整理する必要性を改めて感じました。今後は、特に苦手な分野に関しては任せられる方法を模索し、創業前から続けている業務についても、判断基準に照らして取捨選択を進めていきたいと思います。

クリティカルシンキング入門

心に響く資料作りのコツ

伝え方はどう工夫? 伝えたい内容を整理し、スライドやグラフなどの工夫で分かりやすく伝える方法を学びました。さらに、最後に相手の立場になって発表内容を確認することの重要性も実感しました。 資料作成はどう挑む? 社内向けの説明資料やマニュアル、また社外関係者向けの資料を作成する際にも役立つと感じています。相手のレベルに応じて、内容の硬軟を調整したり、グラフ、文章、あるいは画像のいずれが最適かを考慮しながら、伝えたいことをしっかり届けられるスライドを作り込むことを意識しています。 今後の改善策は? 今後は、より見やすいスライド作りや効果的な資料作成の方法について、皆さんの事例からさらに学んでいきたいと思います。

戦略思考入門

差別化の鍵は強みの見極め

なぜ現状分析が必要? 講義を通じて、ただ単に顧客目線で考えるのではなく、差別化に向けては競合を意識し、実現可能性と持続可能性を検証することが重要であると改めて学びました。まずは、自社の現状を正確に把握するためにVRIO分析を実施し、その結果をもとにポーターの基本戦略を用いてターゲット顧客を絞り込む方法が効果的だと感じました。 どう優位性を確認? また、自社の優位性を明確にするためには、3C分析やSWOT分析と併せてVRIO分析を進めるのが有用であると思います。システム開発が本格化すると、柔軟に対応できる部分が限られてしまうため、提案活動の段階で自社の強みを十分に活かした提案を行うための準備が必要だと考えています。

データ・アナリティクス入門

繰り返し検証で磨く納得力

仮説検証の意義は? 仮説を立て、その仮説を実際に検証することが重要です。検証方法や使用するデータに誤りがないかを確かめることで、より具体的な仮説が作成でき、仮説の精度が向上していくことが分かりました。 検証繰り返しは大丈夫? これまでの分析では、仮説に基づく作業は行ってきたものの、同じ仮説を繰り返し検証する取り組みは十分でなかったように感じます。仮説に誤りがないかしっかりと確認することで、具体的かつ精度の高い仮説が作成でき、説明する相手に納得感を与える報告が可能になると考えます。そのため、今後の分析作業ではこの考え方を意識し、検証作業を繰り返すことが重要です。

データ・アナリティクス入門

データが語る平均の真実

平均計算のアプローチは? 平均の取り方やデータのばらつきを様々な方法で検証することで、より正確な分析が可能になると実感しました。ビジネスにおいて平均値が用いられる場合も、その計算方法や元となるデータの内容をしっかり確認する必要があると考えています。 データ集計の工夫は? また、ERP導入時に用いられるデータ集計機能について、顧客と集計方法を決定する際に今回学んだ考え方が非常に参考になると思いました。さらに、見積提示の際に平均工数を算出する必要がある場合、要件によって結果にばらつきが出るため、算出方法を工夫しながら検討する必要があると感じています。

戦略思考入門

選択の極意:数値で裏付ける挑戦

戦略の選択方法は? WEEK4では「戦略における選択(捨てる)を身につける」というテーマを通して、選択する際には定量的なデータの分析が不可欠であることを学びました。同様に、WEEK5では数値化によって物事を可視化する手法を学び、定量化の重要性を再確認することができました。 新製品策の評価は? 現在の職場では、従来の製品とは異なる新しい製品の開発が求められています。新たな取り組みでは、多くの改善策や施策が立案されますが、その効果を数値で評価することで、結果が低いものを排除し、優先順位を明確にして着実に実行していきたいと考えています。

「確認 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right