データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

クリティカルシンキング入門

具体と抽象で織りなす理解の旅

新しい考え方は? これまで、フレームワークやその活用経験が物事を考えるために必要だと考えていましたが、今回の学びで、根本的な考え方自体を見直す必要性に気づかされました。 分解のコツは何? 特に、物事を分解して考える際には、具体的な面と抽象的な面のバランスをとりながら、上下左右に視点を移動して検討する手法が印象的でした。この方法により、考え方に偏りが生じるのを防ぎ、全体像を捉えやすくなると感じました。 比較検証はどう考える? また、MECEや3つの視といった考え方は、他社製品や技術との比較検証にも有用だと思います。MECEで必要な比較項目を洗い出し、3つの視では相手に合わせたクリティカルな要素を抽出することで、プロとコンの両面を効果的に整理できると考えています。 意見交換で工夫は? これらの手法は、提案や報告、さらにはプロジェクト内での意見交換の際にも役立つと実感しました。相手に合わせたアプローチを行うためには、柔軟に視点を変え、考え漏れがないよう努めることが不可欠であると感じています。

データ・アナリティクス入門

データ分析と仮説思考で売上UPを目指す

3Cと4Pをどう活用する? 複数の仮説と網羅的な思考を持つことを学ぶことができました。また、市場、競合、自社(3C)、製品、価格、場所、プロモーション(4P)を意識した仮説構築の重要性も理解しました。データの収集方法については、本当に対象者からのデータなのか、アンケートなのか、口頭なのか、数値なのか、きちんと比較するための収集といった意識も重要だと感じました。 売上向上のための分析法は? 現在、売上が思うように伸びず、分析検証フェーズに入っています。そこで今回学んだ仮説の立て方やデータの取り方を意識しながら、数値を見ていきたいと思います。また、前回のグラフの最適化も考慮に入れつつ、精度の高い分析・検証を行いたいです。 新たな施策提案に必要な視点 さらに、昨年10月から今年6月までの流入数や購入数、広告費などの数値をしっかりと活用し、相関や因果関係を見つけ出し、仮説思考を組み合わせて新しい施策や提案を行いたいと考えています。様々な仮説を一つずつ検証し、網羅的な分析も合わせて行いたいと思います。

データ・アナリティクス入門

数字に秘めた学びのヒント

数字選びはどうすべき? 代表値やばらつきを考慮し、適切な数字を選ぶ重要性について学びました。データには多様な側面があり、集計して表にまとめる際には、その背景となる意味を正しく理解する必要があります。 データの組み合わせは? また、他者のデータを確認する際も、各数字がどのような要素で構成されているかを意識することが大切だと感じました。たとえば、会議室の使用率や社員の出社率といった具体的な数値をデータベースでチェックし、分布図を用いて関連性を見出そうと試みた経験があります。こうすることで、新たな視点から情報を捉えることができました。 情報整理のコツは? さらに、過去の購買履歴をグラフ化するなど、複数のアプローチでデータに向き合うことで、細かい点まで確認し、本当に必要な情報を抽出するプロセスが重要だと再認識しました。まずは細かいデータを収集し、グラフ化やピボットテーブルを活用して全体像を把握し、さらにまとめられるデータは一つの図に統合することで、情報を整理しやすくすることが効果的だと感じています。

データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

アカウンティング入門

数字で読み解く経営のヒント

図で理解する会計は? PL/BS/FCFは、図を用いて考えると非常に理解しやすいと感じました。また、Accountingの語源が「Account for=説明する」である点に注目し、人にしっかりと説明できるようになるための学習が進むことに期待しています。 取引リスクは正確に? 商社として、仕入先や取引先のリスクを的確に把握し、健全な事業投資へとつなげたいと考えています。具体的には、ビジネスモデルの本質、経営者がどのように資金を集め、どのように活用しているか、また儲ける力や業界内での位置づけが一目で判断できるようになりたいと思いました。 数字の背景はどう? また、まずは自分自身の意見を持つための基礎として、数多くの財務諸表に触れていくことが大切だと感じています。数字の良し悪しだけで判断するのではなく、その背景にある市況や経営者の考え方ともリンクさせることで、数字の意味を正しく解釈できるようになりたいです。そのため、身近な経営者との議論を通じて、自分の財務知識の精度を高めていく所存です。

クリティカルシンキング入門

常に問い、磨く思考力

どうして姿勢が必要? クリティカルシンキングの3つの姿勢を基本に、業務課題の解決に取り組む大切さを学びました。具体的には、①常に目的意識を持つ、②自分の思考の癖を前提として考える、③どんなに考えがまとまっても問い続ける、という姿勢を今後意識して業務に臨もうと思います。また、事業戦略の立案や施策実行の際に、より良い方法がないかと問い直すことで、業務の質を高めたいと考えています。 戦略成功の秘訣は? 事業戦略の成功率を向上させるため、今回の講座で学んだ思考力の鍛え方や、他者に納得感を伝える説明力の重要性を実感しました。この学びを日々の業務に取り入れ、特に戦略立案や関係者の協力・合意を得る場面で積極的に活用していく所存です。 本当に良い判断は? 本日の業務からは、改めてクリティカルシンキングの3つの姿勢を意識し、自分の考えに対して「本当にそれでよいのか」という視点を加えることで、課題解決の精度をさらに高めていきたいと思います。週末までに関連動画も視聴し、必要な知識とスキルの習得に努める計画です。

クリティカルシンキング入門

多角的視点で浮かび上がるデータの真実

グラフ化の効果は? データの見せ方としてグラフ化を活用することで、一覧表では捉えにくかった増減や変化が一目で把握できる点に大変感銘を受けました。試行錯誤を通じて、どの角度からデータを分けるとより具体的な傾向が見えてくるのか、その方法論を実感することができました。 切り口は十分? また、データを分解して考察する際には、最初の切り口だけでは十分な特徴が浮かび上がらない場合もあることを学びました。そのため、別の視点を追加してさらに分解することで、要因をより明確に特定できるようになると感じています。常に「それって本当に?」と疑いながら丁寧に詳細を追求していく姿勢が、根拠を深める鍵だと実感しました。 多角視点は有効? さらに、分析する際には、顧客の属性、購買動機、来店経路など複数の切り口を用いることで、現場での具体的な戦略やアクションに結びつけるための理論的枠組みが形成されると感じています。一つの視点に固執せず、多角的にデータを分解する試みは、今後の実践においても大いに参考になると実感しています。

アカウンティング入門

アカウンティングで未来を読む力を培う

利益理解で何が見える? アカウンティングを学ぶことは、会社の成績表を正しく読む力を養うことだと理解しました。ビジネスは基本的に利益が出ているかが重要です。その利益がどのように構成されているのかを知ることで、自社のビジネス構造を理解することができ、非常に重要だと感じました。 数字から戦略は? 私は、自部門のサポートメンテナンス費用による収入、人件費、そして利益率を正確に把握するために、この知識を活用したいと思っています。また、解釈した数字を基に、人材採用戦略の策定に役立てたいと考えています。さらに、日本のみならず、海外のサポート部門とのベンチマークを行い、課題となり得る部分の把握とその対策についても検討したいと考えています。 数字をどう解析する? もし、サポート内のファイナンス担当から実際の数字を入手できるのであれば、それを自分で解析してみたいと思います。また、会社の四半期ごとの決算書も同様に自分で解析し、会社の状態を推測しながら、今後の判断材料として活用したいと考えています。

クリティカルシンキング入門

分解で発見!学びのチャレンジ

分解の意義は? 「分けていく」ことは、理解を深めるための重要な手段です。たとえば、数字を活用する際には、まず全体を定義し、目的に沿った切り口で分解することが求められます。このプロセスは、結果がすぐに見えてこなくても、どこに傾向があるかを把握する手助けとなります。 迷いはどう克服? 分解する作業に迷いが生じた場合も、早急に結論へたどり着くために、思い切って分解を実施してみることが大切です。時間をかけて検討するより、まずは行動してみることで、意外な発見に繋がることもあります。 課題の本質は? 顧客実績のデータ分析においては、これまで曖昧な課題から無理やり示唆を引き出してしまうことがありました。そのため、問題提起の初めに目的を明確にし、「問題箇所」の特定、「原因究明」、そして「解決策」の各ステップを順序立てて検討する姿勢が必要です。 相談で解決する? また、業務に関しては、同僚や部下との相談を積極的に行い、情報の整理や意見交換を通じて、より良い解決策につなげることが望まれます。

クリティカルシンキング入門

MECEで紐解くデータの真実

分析精度はどう上げる? 今回の学習を通して、データの分け方によって答えにぶれが生じること、また分解方法によっては誤った結果にたどり着いてしまうことを改めて体感しました。まずは多くの分け方や分解方法を列挙し、何度も試行と分析を重ねることで、より精度の高い分析結果を導けるのではないかと感じています。その際、MECEの考え方が重要であることも学び、層別分解、変数分解、プロセス分解を用いることで、もれや重複なく整理する大切さを実感しました。 投資家は何を求める? また、機関投資家に対する営業活動の観点からは、自社商品のニーズがどのような属性の投資家にあるかを検討する際に、本学習で得た知見が活用できると考えています。既存の取引先データを加工・可視化し、様々な切り口で分解することで、アプローチすべき投資家像を明らかにできると感じました。さらに、自社商品のプレゼンテーション資料作成においても、特徴や傾向を多角的に可視化し、投資家に商品性への理解を深めてもらうための有効な手段として活かしていきたいと思いました。

戦略思考入門

CAE解析で実感!効率アップの秘密

規模拡大は本当に有効? 規模の経済性とは、同じものを大量に発注できるメリットを活かし、価格交渉によって原価を低減する効果を指します。自動車業界では、部品数の削減や部品の共通化を進める動きが見られますが、一度不具合が発生するとその影響は非常に大きくなるため、共通部品の設計時にはこれまで以上に品質確保に注力する必要があります。また、製品の使用範囲(許容範囲)を明確にし、その範囲内での最悪条件を想定した評価を行うことも重要です。 技術活用で効果は? 一方、範囲の経済性は、これまで培ってきた技術やノウハウを他の分野に広げることで、シナジー効果や開発コストの低減を図る考え方です。たとえば、生産の効率化ノウハウを他分野に適用するコンサルタント業務や、エンジン開発や性能開発の知見を活かして他のモビリティ、例えばボートなどの開発へ展開することが可能だと考えられます。 社内共有は有用? 私の業務においては、CAE解析用に作成したモデルを社内で共有することで、工数などのコスト削減に寄与できると感じています。
AIコーチング導線バナー

「活用 × 本」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right