データ・アナリティクス入門

角度変えて見つける学びの真髄

多角的に見る大切さは? 物事は一方向からだけではなく、さまざまな角度から捉えることで本質に迫ることができます。一つのデータだけでなく、多くの情報を比較検討しながら分析を進める必要があり、見極める力を養うことが大切です。 データ活用のポイントは? 定量データを扱うことが多い中で、そのデータをどう活かすかを常に検討することが求められます。正確なデータの取り扱いをはじめ、集めた情報を蓄積し、前後の変化を比較することが、分析力向上の基礎となります。 数字のパワーを知る? また、分析により提案が有力な判断材料となるよう、数字の扱い方や活用方法にも工夫が必要です。数字が持つパワーは、その扱い方次第で大きく変わるため、具体的な活用策を考えることが重要です。

データ・アナリティクス入門

探る仮説、見える可能性

仮説思考の意味は? 仮説思考の重要性について学びました。複数の仮説を立て、フレームを活用することで検証すべき論点を網羅的に整理できる点が印象的でした。仮説を証明するためのデータ収集では、支持するデータだけでなく、他の仮説を排除するための情報も集める必要があると理解しました。このプロセスにより、検証マインドが向上し、説得力が高まる好循環が生まれると感じました。 現場での工夫は? コンサルティングの現場では、プロジェクト開始時に既に大論点が明確な場合が多い中で、自ら複数の仮説を検討し、大論点を中論点や小論点に分解して検証ポイントを明確にする作業が求められます。また、上位者との壁打ちを通じて精度を高めることで、効率的な問題解決が実現できると実感しました。

戦略思考入門

本当の強み、ここに見える

顧客ターゲットの見直しは? 差別化について考える際、まず自社が対象とする顧客を明確にし、その顧客にとって価値のある施策を実施する必要があります。こうした施策は、競合他社が簡単には模倣できない点が重要であり、同時に自社のコスト構造や持続可能性についても十分に検討する必要があります。 組織力向上は可能? また、初めて知ったVRIOというフレームワークですが、よく考えてみると既に活用している部分があると感じました。自社の強みをVRIOの観点から見直すと、「模倣困難性」には高い評価が得られる一方で、「組織」の部分が弱いと捉えられます。組織力を向上させることができれば、一気に成長が期待できるものの、その実現は非常に難しい課題だと考えます。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

データ・アナリティクス入門

実例でわかる抜け漏れゼロの分析術

抜け漏れチェックはどうする? 分析の要素を検討する際、抜け漏れや重複がないかどうかを意識することがとても重要だと感じました。これまで、何気なく分析要素を挙げていたため、知らないうちに抜け落ちたり、同じ内容が重複してしまったりするケースがあったと思います。今後は、ロジックツリーなどの手法を活用し、適切かつ網羅的な分析要素を抽出できるよう努めたいです。 売上向上に本当に効く? また、離職率の改善や売上増加といった課題に対して、今回の学びが有効に活かせると感じています。動画で紹介されていたように、離職の原因分析や売上向上のために何がネックになっているのかを明確にすることで、具体的な対応策を検討する際の手助けになると考えています。

戦略思考入門

競合を超える学びの秘訣

差別化のカラクリは? 差別化を細分化することで、他社に対する優位性の原泉を見出すことができると学びました。さらに、競合他社だけでなく、同様の取り組みを進めている他業種にも目を向ける新たな視点が印象的でした。 BRIOで何を発見? また、BRIO分析においては、普段意識されにくい模倣困難性という要素に気付くことができ、これが大きな発見となりました。 戦略をどう活かす? これらの学びは、現在担当しているクライアント様向けのサービスにおける差別化や基本戦略の方向性を合わせる際に、大いに活用できそうです。視点を統一することによって、次のステップとなるアクションプランの検討も進めやすくなると感じています。

データ・アナリティクス入門

比較の技術が未来を変える

比較技術はどう? 分析において「比較」という考え方が、どのような状況下でも基本となると強く感じました。評価が難しい内容についても、適切な比較を行えば納得のいく結果が得られる点が興味深く、あらゆるシーンで適切に比較を行う技術を身につけることが今後の課題だと思います。 過去データの活用は? また、スケジュールの計画や見積もり作成時に過去のデータを参考にすることはしていましたが、複数のデータや各プロジェクトの特性を考慮する視点が不足しており、根拠が十分でなかった側面がありました。今後は、複数のプロジェクト実績や見積もりを比較検討することで、より説得力のある提案が行えるよう努めたいと思います。

戦略思考入門

実務の未来を切り拓く学び

実務演習で何を掴む? 総合演習は、実務を意識した問題設定と具体的なアプローチのヒントが随所に散りばめられており、大変勉強になりました。普段、実務で何から手をつけるべきか迷うことが多い中で、こうした問題演習を通じてフレームワークの効果的な使い方を学べたことは大きな収穫です。 数字活用はどう感じる? また、コスト削減の方法にも一定のパターンがあることを知り、自社の事業に適用できる案を考え、提案する意欲が湧きました。さらに、数字を基にして話の組み立てを行う重要性を改めて実感し、今後は事業の未来を検討する際にも具体的な数字を活用して論理的に話を整理していきたいと考えています。

データ・アナリティクス入門

平均じゃ見えない真の学び

数値の変化、どう捉える? 普段、教材の活用数値を過年度で比較する機会が多いのですが、昨年と数値に大きな変化が見られなかった場合は、深掘りした分析に至らないことが多かったです。しかし、各属性ごとの活用状況について、単なる平均値だけでなく分布の度合いにも注目することで、より詳細な比較が可能になると感じました。 平均値の選び方は? また、単純平均に頼らず、状況や条件に応じた5つのパターンを使い分けることで、正確な平均値を求める手法が有効だと思います。ただ、具体的にどのパターンを用いるか、その判断基準については、今後の検討課題として捉えていこうと考えています。

データ・アナリティクス入門

仮説で切り拓く未来への道

仮説で何が変わる? 問題解決の第一歩として、仮説を立てる方法を学びました。仮説にデータ分析の視点を加えると、その説得力や信頼性が一層増すことを実感しています。また、仮説を立案することにより、自分の行動の筋道が明確になり、周囲への説明もしやすくなります。 3Cや4Pの意味は? 仮説の立て方については、特に3Cや4Pといったフレームワークを活用し、複数の仮説を網羅的に考えることの重要性を学びました。決め打ちにせず、幅広い視野で仮説を検討することで、日々の小さな問題にも柔軟に対処でき、周りを巻き込んだ改善活動にも効果的に取り組めると感じています。

データ・アナリティクス入門

一人じゃ見えないチームの力

一人分析はどんな落とし穴? 課題に対して自分ひとりで分析を実施すると、見落としや重複が生じ、MECEが保たれなくなる恐れがあると感じました。そこで、分析の前段階で依頼者や他社と情報整理を共有し、確認しながら進めることが有効ではないかと思います。 フレーム活用で目標達成は? また、ロジックツリーやその他のフレームワークを活用することで、製品の売上目標達成に向けた現状分析や必要なアクションの抽出に役立つと考えます。現状の情報整理や今後のアクション計画について、関係者と相談しながら、実施可能な施策を具体的に検討していくことが重要だと実感しました。

「活用 × 検討」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right