デザイン思考入門

とことんユーザー体験を追求する

ユーザー体験はどう感じる? 金融機関で個人株主向けのサービス開発に携わる中、金融機関であるがゆえに自分自身で個別銘柄の株を購入できず、ユーザーとしての体験がなかなか得られない状況です。一方、投資信託は購入可能ですが、商品が多岐にわたるため、ある程度ユーザーターゲットを絞る必要があると感じました。 夢中になる理由は? また、業務から離れて、自分が真に夢中になれることを事業化するシナリオを考えると、デザイン思考の本質により迫れるように思います。現在の業務ではユーザー体験を得にくいため、一言で言えば「とことんユーザーになる」ことが大切です。そして、チームは多様な専門性を持つ少人数体制が理想的だと考えます。こうした視点は、現職での取り組みとは対極に位置しており、職場でのデザイン思考活用には伸び代が限られていると感じました。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

クリティカルシンキング入門

見える!MECEで課題解決のヒント

MECEとはどう考える? 今週の学びは、MECEの考え方と切り口の作り方についてでした。MECEとは、全体を定義し、もれなく重複なく切り分けることで、目的に沿った視点で事象を分解し、問題の所在を把握する手法です。 どんな切り口を使う? 具体的には、層別分解、変数分解、プロセス分解という3つの切り口が挙げられます。業務改善の課題分析に活用する際、これらの方法を組み合わせることで、従来のプロセス分解のみでは見落としがちなポイントを捉えることが可能になります。 問題解決の糸口は? 従来はプロセス分解で分析を行っていたため、問題点が多い場合にどこから手をつけるべきか迷うことがありました。しかし、まず解決すべき問いを明確にした上で、層別分解や変数分解を取り入れることで、目標に沿った形で課題を整理できると感じました。

クリティカルシンキング入門

効率的な課題特定で未来を創る

どう考えて選ぶ? 相手にメッセージを伝えるためには、何をどのようにすべきかを明確にすることが重要であると学びました。また、課題を的確に特定することが、すべての基本になると思います。今後は、明確に課題を特定し、自分が直面している問題をしっかり考える習慣をつけたいと思います。 なぜすり合わせる? 毎日多くの業務をこなす中で、深く考える時間が取れていないのが現状です。このままでは、さらに仕事が増えてしまうと感じています。そこで、ミーティングでは課題解決や共有すべき内容をしっかりすり合わせたいと思います。 どの議題を用意? 毎週行われるミーティングでは、事前にどのようにディスカッションを進めるか、何を課題として捉えるかを準備しておこうと考えています。適切な議題設定とその活用を通じて、実践していきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

クリティカルシンキング入門

伝わる!ピラミッドの極意

伝え方はどう変わる? ピラミッドストラクチャーの考え方を学び、何をどう伝えるべきか、メインメッセージとその理由、根拠を明確にする重要性を実感しました。自分の伝えたいことを一方的に表現するのではなく、相手にきちんと伝わる方法を心掛けることが大切だと感じています。 業務効率は向上? この考え方は、上司への提案や相談、部下への指示出しなど、日々の業務において活用できると思います。相手に求めることやその背景、理由を論理的に伝えることで、業務の効率化にもつながると考えています。 スキルは伸びる? 今後は、提案や指示を行う前にピラミッドストラクチャーの手法を活用し、伝えたい内容が明確かつ論理的に整理されているかどうかを意識していきたいです。そうすることで、伝え方と考え方のスキルの向上を目指していきます。

クリティカルシンキング入門

振り返りから見える成長の瞬間

自分で手を動かす意義は? 与えられたデータをただ眺めるだけでなく、必ず自分自身で手を動かし、さまざまな観点から検討することが大切です。一つの切り口だけでは見落としがあったり誤った結論に至る可能性があるため、複数の視点をもって仮説を立て、検証する必要があります。まずは、全体をどのように定義するかを明確にしてから、データの分け方を考えてみてください。そして、その考え方が本当に正しいのか疑う姿勢も忘れずに持つようにしましょう。 データが提案の鍵か? 通常の業務でデータを扱う機会があまりない場合には、まずクライアントとの会話の中で参照できるデータについて触れてみると良いでしょう。提案の際、市場や現状の理解を示すためにも、データを活用しながら仮説をもとにさまざまな切り口で検証していくことが求められます。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

データ・アナリティクス入門

整理の魔法!ロジックツリー術

全体像はどう把握? ロジックツリーを用いることで、全体を俯瞰して物事を捉え、抜け漏れなく整理する手法を学びました。同時に、細かく分割する過程で目的そのものに偏らず、重要な要素を見逃さないバランス感覚の大切さも実感しました。 学びをどう応用する? これらの学びは、データ移行のプランニング時のプロセス分割や、データ分析において対象項目の洗い出しと重要度付け、プロジェクト体制の整理、また予算計画時の項目洗い出しなど、業務のさまざまな場面で応用できると考えています。 具体策はどう実行? 具体的な行動としては、まずスコープを決定する際にチェックツールを活用して抜け漏れがないかを確認し、プロセス整理の際にはロジックツリーを使って複雑な要素を分かりやすく簡素化する取り組みを行っていきたいと思います。

戦略思考入門

理論と実践で磨く戦略力

戦略思考はどこに効く? 戦略的な思考方法を体系的に学ぶことができ、実践を重ねることでフレームワークの理解が深まりました。講座で得た知識は、単にビジネスシーンだけでなく、自己分析にも有効であり、今後のビジネスプランを構築する際に大いに役立てていきたいと感じています。 部署立て直し戦略は? まずは、自分の部署の立て直しにこのフレームワークを活用する計画です。自社の理解を深め、企業のゴールを踏まえた上で、部署の目標設定と現状把握を行います。自分自身で課題を見つけ、解決策を考えた上で、その考えをスタッフとも共有し、各自に現状把握から課題発見と解決策の検討を促していきます。 工数削減効率向上は? また、契約上の人月がマイナスである現状を踏まえ、工数を削減することで業務の効率化に取り組む予定です。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

データ・アナリティクス入門

未知の平均値に挑戦

指標の基礎はどう? これまで平均値と中央値を用いた分析は行っていましたが、加重平均、幾何平均、標準偏差といった他の指標については十分に理解していませんでした。今回、これらの指標の基礎を学ぶ中で、その重要性を実感しましたが、実際に活用するとなるとまだ課題が多いと感じています。今後は、これらの考え方をさらに深め、実践的な使い方を模索していきたいと思います。特に、経営指標として必要な幾何平均については、実データを用いて分析に挑戦する予定です。 どんな分析を試す? 自社製品の原価と営利に関する調査・分析の中で、今回学んだ幾何平均を早速活用し、過去のデータを基に営利分析を実施します。また、部門ごとの工数分析では、業務に費やす時間だけでなく、関わる人数も考慮に入れて評価し、より客観的な分析を目指します。
AIコーチング導線バナー

「活用 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right