クリティカルシンキング入門

視覚×データで磨く伝達術

視覚要素の威力は? リード文とグラフ、データなどを組み合わせることで、情報伝達力が向上することを再確認しました。視覚的な要素を取り入れることで、受け手が内容を誤解しないようにする効果があると感じています。また、資料作成においては、周囲の環境や相手の置かれた状況、立場といった前提条件を明確にすることが重要です。 報告文の改善方法は? リード文は、社内の業務連絡やチャットで必ず目を通してもらいたい内容として活用されており、幹部向けの予算報告や顧客向けの報告にも有用だと考えています。さらに、これまで文章で行っていた報告内容を、視覚的に分かりやすいグラフやデータに置き換えられないか、検討を進めています。 他者目線を考える? すぐに活用できる場面は少ないものの、日常的にどのようにすれば情報が視覚的に伝わりやすくなるかという感覚を磨くことが大切です。また、作業報告においても、相手目線で内容がどう映るかを意識し、迅速に対応できるように努めています。

リーダーシップ・キャリアビジョン入門

戦略的キャリアで未来を切り拓く

現状把握はどうする? キャリア・アンカーを通じて自分の現状が把握でき、優先順位の整理がしやすくなりました。環境変化が激しく、人や働き方が多様化している現代では、キャリアは戦略的にプランニングする必要があると実感しています。定期的にキャリアを見直し、今後のキャリアデザインをしっかり考えることが重要だと感じました。 理想実現の道は? 自分自身のキャリアへの考え方を深めるために、まずはキャリア・アンカーを活用し、そのうえでキャリア・サバイバルを参考に理想のキャリア実現に向けて具体的な行動を考えていきたいと思います。業務においても、関係者のキャリア志向を理解しながら接することで、より有意義な仕事にしていきたいと考えています。 企業要求に合わせる? また、キャリア・アンカーには8つのパターンがある中で自分のパターンを把握した後、業務や企業が求めるものと自分のパターンが異なる場合に、どのように適合していくのかについても知見を深めていきたいと思います。

クリティカルシンキング入門

シンプル伝達で印象アップ

グラフ活用のポイントは? グラフの活用にあたっては、内容やスライドの順序が伝えたい情報と一致しているか、また、受け手が余計な労力をかけずに内容を把握できるように工夫されているかが重要だと感じました。分かりやすく、無用な情報を省くことで、より効果的な資料作りが求められていると実感し、今後は資料作成を一層意識的に行っていこうと思いました。 朝会の伝え方はどう? プロジェクトの朝会では、限られた時間の中で複数のメンバーに対し、印象に残る効果的な伝え方をどのように実現できるかを改めて考える機会となりました。毎日の業務の中で、時間をかけすぎずに要点をしっかり伝える習慣とスキルを身に付けることが大切だと感じています。 資料見直しはどうする? また、ちょうど見積資料を作成するタイミングということもあり、誰にどのようなメッセージを届けたいのかを改めて意識し、伝えたい内容が適切に表現されているか、見直しが必要な部分はないかをチェックする重要性も学びました。

クリティカルシンキング入門

退職分析に新たな視点を見出した学び

手法が偏っている? MECEや分析は普段の業務から実施していますが、その手法が偏っていることに気づきました。より幅広な視点からデータ分析を行い、矛盾や重複、不足がないように、手を動かしながら進める必要があると感じています。 新たな分析切り口とは? 具体的には、現在の業務で組織内の退職者分析を行っています。これまでは勤続年数や年齢、入社区分、役職、評価で分析していましたが、この方法では単純なレンジでまとめていました。今後は仮説を立てつつ、データの特徴が掴めるような切り口を工夫したいと思っています。また、AI(CopilotやChatGPT)を活用して、自分では気づかない切り口も探していきたいです。 分析方法の見直しは必要? 退職分析チームとミーティングを行い、これまでのステレオタイプな分析方法を見直すことを提案しました。特に、管理職者へのインタビューを元に仮説を立て、新卒若手かつ高評価者の退職傾向やその時期を特定する努力をしています。

データ・アナリティクス入門

偏見を超えるデータの力

バイアスはどう捉える? データ分析を学ぶ中で、ただ数値を扱うのではなく、自己のバイアスを取り払い、タスクに合わせてニュートラルな視点に切り替える大切さを実感しました。このような状態で、高い専門性と比較するスキルを活かし、データから具体的な仮説を立証できると理解しています。 セキュリティは大丈夫? 社内で広くデータ分析を利活用するためには、堅牢なセキュリティ基盤とデータ基盤の構築が不可欠だと感じます。編集機能やデータ閲覧機能を適切に制御しながら、データウェアハウスを運用することで、業務に活かすための取組みが一層進むと考えています。 AI応用はどう進む? さらに、データアナリティクスを深く理解するために、4月から9月までの期間を通じて学習を進めるとともに、生成AIを取り入れたデータ分析への応用も視野に入れています。データウェアハウスから得られる結果や知見を、プログラムを通じて読み解くスキルの習得が、今後の発展に大いに寄与すると感じています。

データ・アナリティクス入門

問題解決を極める!MECE活用法

問題解決プロセスはどうする? 問題解決のステップであるWhat/Where/Why/Howを実施する際、MECE(モレなくダブりなく)に留意して問題を切り分け、明確化することは、普段の業務でも自然に行っています。しかし、これを改めて整理すると、より理解が深まることを実感しました。 部下の問題対応をどう支援する? 実務においても、問題に対してモレなくダブりなく切り分けて明確化し、要因分析を行えているかを確認したいと考えています。部下から日々さまざまな問題が報告される中で、この点が確実にできているかを検証し、対策をまとめるサポートをしていきたいと思っています。 部門内の案件をどう分析する? 直近で部門内で問題となっている案件を選び、それぞれの担当者がどのように問題の要素分析を行い、どのような検討を経て対策を導き出しているのかを確認したいと考えています。特に要素分析の段階でMECEをしっかりと実施できているかを重視して見ていきたいです。

クリティカルシンキング入門

グラフとフォントで魅せる資料

グラフの使い方は? 伝えたいメッセージを視覚的に伝えるためには、グラフの活用や文字のフォントなど、ひと工夫が不可欠であると学びました。たとえば、同じグラフでも、伝えたい内容に合わせて適切な形式に変更することで、受け取り手の印象が大きく変わることを実感しました。 学びはどう活かす? 今回の学びは、顧客への提案資料作成、メール文章の作成、また報告文書の作成など、さまざまな業務に応用できると考えています。自身で資料を作る際だけでなく、他者が作成したものをチェックする際にも、大いに役立つと感じています。 資料作成の工夫は? 提案資料や報告資料を作成する際には、相手に伝えたい内容を明確に意識し、余計な疑問を抱かせない表現や構成を心がける必要があります。具体的には、「見出し」や「適切なグラフ」「文字のフォント」「色」「下線強調」などのテクニックをバランスよく取り入れ、全体の印象が過度にならないよう注意しながら作成することが大切だと思います。

クリティカルシンキング入門

ピラミッドストラクチャーで納得の提案術

伝え方はどう工夫する? 言いたいことを相手に伝えることは、日々の業務で難しさを感じています。しかし、ピラミッドストラクチャーを活用することで、理由をいくつかのパターンに分けて示し、説得力を持たせることができると学びました。新しい研修を上司に提案する際には、この手法を使って必要性を具体的に伝えたいと思います。 提案内容は何だろう? 提案内容は、以下の4点に絞ります:【開催の理由】【開催時期】【研修内容】【メンバーの調整】。これらの点からさらに具体的な内容に踏み込み、研修の開催が必要であることの根拠を示したいと考えています。 不足点はどう解決する? まず、研修開催に向けて必要なことを書き出し、業務で現在不足していることを明確にします。そして、研修対象となるメンバー自身が不足を感じている点をヒアリングします。最後に、具体的な日程やシフトの調整を行います。このように、ピラミッドストラクチャーを活用して根拠を整理し、上司に提案を行います。

戦略思考入門

実例で磨く戦略思考のススメ

実例で理解が深まる? 3C分析やSWOT分析については、以前から意識していたつもりでしたが、実例の解説が非常に分かりやすく、理解がより整理できたように感じました。 初めての分析体験は? バリューチェーン分析に関しても、従来は言葉としては知っていたものの、具体的な分析手法としての活用方法は今回初めて学びました。事例が具体的で参考になったため、今後の業務などに積極的に活用していきたいと思います。 後進育成と戦略見直しは? また、後進の幹部候補それぞれに3C分析を行ってもらい、自身の強みと弱みを把握した上で、企業活動のどの部分に貢献できるかを考えてもらう取り組みを計画しています。さらに、自社で行っている製造業向けのERPパッケージ導入サービスにおいて、最近、競合他社が低価格設定で攻勢を強めている状況を受け、マネージャー以上で3C分析やSWOT分析の見直しを行うとともに、新たにバリューチェーン分析にも取り組み、提案内容に反映させるつもりです。

データ・アナリティクス入門

幾何平均で拓く新視点の統計術

平均と標準偏差の意味は? これまで平均値と標準偏差をなんとなく使用していましたが、今回の学びを通じて、それぞれの利用目的や強みが明確になりました。特に、幾何平均については、これまで計算式が難しいという理由からあまり触れてこなかったものの、その特徴を理解できたことで、必要に応じて積極的に活用していきたいと感じています。また、標準偏差についても、グラフで見るイメージだけでなく、具体的な数値として求められることを知り、大変驚きました。 業務に活かす意図は? 業務では、マーケティング部門として販売実績の分析や経営層への成長率報告のデータ分析に役立てることができると実感しています。具体的には、各社の売上高を中央値や標準偏差で分析したり、販売実績の成長率に対して幾何平均を用いるなど、状況に応じた情報提示ができるように活用していきたいと考えています。 幾何平均の応用点は? また、幾何平均が適用できる場面について、さらに意見交換を行いたいと思います。

データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

データ・アナリティクス入門

実践で磨く論理的仮説力

復習会で何を学んだ? 今週は、学んだ内容を振り返る復習の会が行われました。授業内での演習では、これまで学んだ知識が実際の場面で役立つことが多く感じられましたが、フレームワークの定着が不十分なため、仮説を立てる際に無計画に仮説を出してしまうこともありました。しかし、即座にフィードバックを受けることで、その意見が定着の助けとなり、次のステップに進む良い機会となりました。 業務でどう活かす? 学んだ内容は、業務での問題解決や意思決定に大いに役立ちそうです。例えば、部門で課題が発生した場合、データ分析を用いて仮説を構築し、フレームワークで整理することで、明確な解決策を導き出しやすくなります。また、新しいツールや業務プロセスの導入時には、評価軸を設定し、客観的に比較する方法が意思決定の支援に有効です。今後は、データ分析技術やフレームワークを日常的に意識して活用し、論理的な仮説立案を習慣付けることで、業務の説得力と成果を高めていきたいと考えています。
AIコーチング導線バナー

「活用 × 業務」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right