クリティカルシンキング入門

ナノ単科が開く挑戦の扉

どのグラフを選ぶ? データを視覚化して情報を分かりやすく伝える際は、テーマに合ったグラフを選ぶことが大切です。時系列の変化を示す場合は左から古い順に配置された縦棒グラフ、要素ごとの伸びや量を表す際には横棒グラフ、割合を示す場合は円グラフや帯グラフ、変遷を伝えるときは折れ線グラフを使うと効果的です。間違ったグラフを選んでしまうと、本来伝えたいメッセージが正しく伝わらなくなるため注意が必要です。 フォントで印象作る? また、文字のフォント、大きさ、色などは、受け手に与える印象を大きく左右します。強調したいメッセージに対しては、これらの要素をうまく活用することで、より伝わりやすくなります。反対に、注意事項を伝えたいにもかかわらず、小さいフォントや細字、目立たない色使いをすると、伝えたい内容がうまく伝わらない可能性があります。 視覚配置はどう? スライドを作成する際は、リードメッセージと、それに続くグラフや表、アイコンなどのビジュアル要素が一体となっているか確認することが重要です。リード文とグラフの配置にずれがなく、アイコンや色彩が伝えたいポイントを適切に表現しているか、しっかりチェックしましょう。 情報整理はできる? クライアントに提示するドキュメンテーションの場合、リード文やボディに情報が散乱しすぎたり、何を伝えたいのかが不明瞭になったりしないよう注意が必要です。社内資料やクライアントから受領した資料を使う際には、メッセージとグラフ、表にズレや矛盾点がないか、十分に確認することが求められます。よく確認し、擦り合わせを怠らないことで、論点がブレたり、ゴールが不明確になったりする事態を防げます。 図表の確認は? さらに、グラフや表にする際は、タイトルや単位など必要な情報が欠けていないか、常に注意深くチェックしてください。伝えたいことや論点を整理し、日本語の文章に落とし込むことで、より分かりやすく伝えることが可能になります。色やフォント、図表の配置が相手の理解を助ける順序になっているか、また、自分が話しやすい構成になっているかを意識しましょう。 資料の見直しは? 最後に、日々目にする膨大な資料やデータを読む際、矛盾点や分かりにくい点が見つかった場合は、作成者に確認することを心がけ、情報のずれが生じないよう対策を講じることが大切です。

リーダーシップ・キャリアビジョン入門

後輩育成の秘訣と学びのコツ

新メンバー指導のポイントは? 学びとなった点は以下の3つです。 まず、新メンバーの指導において、以下の3点を必ず押さえることが重要だと感じました。1つ目は、初めに「何をどこまで任せるか」を明確に伝えることで、相手との共通理解を得ることです。2つ目は、その仕事の意義や目的を伝え、「なぜやるのか」を理解させることです。これにより、相手が自律的に動きやすくなります。3つ目は、相手の経験や能力を確認し、それに応じたフォロー体制を整えることです。 学び方のコツとは? 次に、学び方のコツとして3つあります。1つ目は言語化で、考えを言葉にし、漠然とした考えで終わらせないようにすることです。2つ目は教訓化で、各ケースを客観的に分析し、普遍的な教訓を引き出すことです。3つ目は自分化で、引き出した教訓を自分の状況に照らし合わせ、自分の課題や弱みを改善するために考えることです。 リーダーシップの育み方は? また、リーダーシップの三要素について学びました。能力と意識を掛け合わせることで行動が生まれるというもので、私の場合は能力に偏っていたため、明るく前向きでオープンな意識を、業務を通じて日々心掛けていきたいと思います。 ジュニアメンバーへの効果的な指導策 チーム内のジュニアメンバーに業務を依頼する際には、この学びを活かし、特に相手の経験や能力の事前把握を重視したいと思います。以前はフォロー体制が不十分で、相手の信頼を得られていないこともあったため、改善する所存です。リーダーシップに関しては、「明るく機嫌よく前向きでオープン」を意識し、信頼されるリーダーを目指したいです。現在は意識にムラがあるため、人との関わりの中で積極的に意識していきたいです。 指導プランの具体例は? ジュニアメンバーへの指導プランとして、月に一度のロープレを実施し、経験や能力を丁寧に聞き取ることで、相手の視点に合わせたフォロー体制を築き、信頼を得ることを目指します。一方、意識面の行動プランとしては、「明るく前向き、機嫌よくオープン」を実践するために、常に笑顔を忘れず、終礼時に適度に自分の情報を開示し、ジュニアメンバーとの関係性を深めていきます。また、週の定例ミーティングでは、ジュニアに考えさせるような意見や指摘を心掛け、彼らの成長をサポートしたいと考えています。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

戦略思考入門

戦略的思考で最速ゴールへの道

戦略思考を理解できた? Week.01からWeek.04までを通じて、「戦略的思考」という概念を全体的に理解することができました。この学びを通じて、「戦略的思考」とは、以下のようなプロセスであることが分かりました。まず、適切なゴールを設定し、そこから現在地までの道のりを描きます。そして、その道のりを可能な限り最短で到達するために、取捨選択の重要性が求められます。 情報整理って大事? 目的や目標を達成するためには、まず情報を整理し分析してから、基本戦略として差別化を図ることが求められます。そして、実行に移す際には、取捨選択が必要となり、場合によっては戦略の検討段階で捨てることによるメリットを考えることもできます。このプロセスにおいて、取捨選択の実施は必ずしも一定の順番で行われるわけではなく、場合によっては前後することもあります。 慎重な取捨選択は? 取捨選択の際に重視するべきポイントとして、顧客の利便性を高めるために敢えて捨てることもあり得ます。また、常に最適解を求め、「惰性」に流されないための思考停止を避けることも重要です。さらに、専門家に任せるという観点から外注やアウトソーシングを検討することも一つの手段です。 優先順位はどう付ける? 優先順位を付ける際のポイントですが、特に資源が限られている場合には、効用の最大化を念頭に置いた判断が求められます。ここで役立つのが、無差別曲線の概念です。また、異なる要素が互いに打ち消し合う場合には、注力すべきポイントを明確にし、メリハリのある投資を検討する必要があります。 業務を見直すには? 実際の業務においては、取捨選択の際のポイントである「惰性」に流されないことや、「餅は餅屋に任せる」という戦術を活かすことができると考えています。例えば、日々の業務を振り返り、目的や目標に沿って改善すべき点があると感じた場合、これを行動に移していきたいと思います。また、専門外の業務に過度に深入りせず、適切に専門家に任せることで、最速でゴールに到達するための提案を行うことが可能です。 学びをどう活かす? これらの学びを活かし、目的達成に向けた適切な取捨選択と効果的な優先順位付けを実行に移し、より良い成果を目指していきたいと感じています。

戦略思考入門

視座を高め、課題を多角的に捉える転機

戦略思考とは何か? 戦略思考とは、「物事の本質を見極め、目標を効果的に達成するためにシステマチックに考える」ことを指します。これには、大局観を持ち、情報をバランスよく収集・分析することが求められます。この広い視点での情報収集にはフレームワークが役立ちます。フレームワークを活用することで重要なポイントを包括的に捉え、広範囲で情報を整理することができます。また、異なるフレームワークを使うことで、さまざまな切り口から情報を収集でき、問題を網羅的に捉えるには、それぞれの整合性とバランスも重要です。 問題を話し合う際の注意点は? 問題について話し合う際の注意点としては、以下の三点が挙げられます。第一に、経営者視点で考えること。第二に、ジレンマを過度に恐れないこと。第三に、他者の意見にしっかり耳を傾けることです。 全社視点の重要性は? 全社的な視点で捉えた場合、自分の部署の仕事にはさまざまな意味合いがあります。これには、新規顧客の獲得、顧客の囲い込み、安全で安心なお買い物の提供、商品のプレゼンテーションの場の提供、そして低価格の実現といったものがあります。特に、コストの削減は常に重要な課題です。コスト、品質、納期の三つの要素の均衡を保ちながら業務を進める必要があります。 海外業務移行の課題は? 現在、私の部署では海外現地法人への業務移行に取り組んでおり、課題となっています。業務は専門性が高く、各国現地法人のみで完結するのは難しい状況です。売場で使用する陳列什器も種類が多く、日本の業者でも習熟には時間を要します。さらに、CAD操作や建築知識も必要であり、業務の難易度が高いです。 優先課題の明確化はどうする? まずは、高い視座でネックポイントを洗い出すことが重要と感じました。現在の課題が本当に効果的なのか、他に優先すべきことはないのか、多面的な視点で捉えることから始めるべきだと思います。一人で考えていると視野が狭くなるため、自部署のメンバーを巻き込み、取り組むべき課題を明確化していきたいです。 AIチャット活用の可能性は? 適切なフレームワークの選択がまだ難しいため、AIチャットを利用して課題に対する適切なフレームワークを提案してもらうのも良い方法ではないかと考えています。

戦略思考入門

捨てる勇気と明日の可能性

捨てるの意味は何? 「捨てる=取捨選択」という言葉はよく耳にしますが、具体的な成功事例、たとえば有名なアパレル企業や宿泊業界の事例を通して、捨てることによるメリットをより解像度高く理解することができました。捨てるためには、何を優先すべきか、また何を優先しないのかを明確にし、優先順位を決定する基準としては、情報の正確な把握や試算、さらには「ROI(投資対効果)」を意識することが重要だと実感しました。これまで感覚や時間軸に頼って判断していたものを、今回の学びを通じて具体的な手順に落とし込めた点が大きな収穫です。 どう判断すればいい? 具体的には、まず相手が何を求め、どのような点を評価しているのかを正確に把握すること。次に、必要な情報を収集し、試算を交えて判断する。そして、時間軸や費用軸を踏まえたうえで、投資対効果を意識しながら優先順位を設定する姿勢が求められると感じました。これにより、勇気をもって選択する大切さも改めて意識することができました。 品揃えの取捨は? 業務面では、例えば食品を扱う現場における「品揃え」が重要なポイントとなります。差別化のために他では扱えないこだわりの品や地域特有の商品を取り入れる方法もありますが、生産効率や配送効率の面からコストが高くなる可能性があります。従来は時間軸で判断していた品揃えの優先順位も、今後はROIを意識して決定していく必要があると考えます。 現状の課題は何? また、自社においては人員不足や多様な食品の嗜好に対応するため、すべての取引に対して十分なリソースを割くことが難しい現状があります。売上に直結する取引の数は非常に多いものの、対応可能な人員や時間、コストを踏まえて判断する必要性を認識しました。自らが取引の決定権を持つわけではありませんが、判断材料としてしっかりと把握しておくことが求められると感じました。 次の行動は? 今後の行動計画としては、過去から続く取引について、売上や利益、投入した時間を算出し、内容の棚卸しや整理を実施します。さらに、時間あたりの利益を基準に優先順位を設定し、自身の業務において取り組む順番や時間配分を見直していきます。最後に、上司へこれらの取引に関する進言を行い、全体の効率向上につなげたいと思います。

デザイン思考入門

共感で見つける本質解決のヒント

共感と課題は何? 今回の学びを通して、問題解決のプロセスにおいて「共感」「課題定義」「発想」「試作」「テスト」の各段階が重要であると実感しました。最初の共感の段階では、単に相手の声を聞くのではなく、その背景にある本当の課題を深堀りすることが必要だと感じました。続いて、課題定義では、表面的な問題にとらわれず、本質的に解決すべきポイントを明確にすることの大切さを学びました。 アイデアはどう生まれる? 発想の段階では、固定観念にとらわれず自由な視点でアイデアを広げることが、新たな解決策を生み出す鍵であると印象に残りました。試作では、完璧を求めるのではなく、まず形にすることで実際の課題を発見しやすくなるという点が重要です。そして、テストを通じて想定と現実のズレを把握し、より実用的な形へと改善できると実感しました。これらの考え方は、バックパックの開発だけでなく、地域づくりやイベント企画にも応用できると感じています。 地域の課題は何? 地域づくりに活かすためには、まず共感のステップを大切にし、住民の声を丁寧に拾い、その背景や本当に求められているものを深掘りすることが重要です。単なる意見収集に留まらず、本質的な課題が見えてくることで、地域の長期的な発展に必要なポイントを明確にできます。 イベント対策はどう? さらに、具体的な事例として、イベントの参加者減少に直面した際は、単に告知方法の改善だけでなく、イベント自体の内容を見直すなど根本的な原因にアプローチする必要があると感じました。アイデア創出の段階では、地域の異なる世代や職種の人々を巻き込み、ブレインストーミングなどを活用して多様な視点から新たな取り組みの方向性を探ることが効果的です。 実践から何学ぶ? その後、小規模な試作を実施し、住民の反応や参加率を観察しながらイベントや施策を改善していくのが望ましいです。最後に、テストを繰り返しながら、参加者のフィードバックを基に内容を調整し、持続可能な形にブラッシュアップしていくことが求められます。こうしたプロセスを継続的に振り返り、地域の変化に応じた柔軟な対応を心がけることで、住民が主体的に関われる仕組みを作り、地域づくりの可能性を広げていきたいと思います。

クリティカルシンキング入門

思考整理の具体的手法と実践の大切さを学ぶ

言葉の重要性に気づく 今回大事だと感じたポイントは以下の四点です。 まず、自分の言葉により相手の負担度が変わってしまうこと。これは、サボってはいけないということを意味します。次に、「誰がどうしたか」を明確に伝わりやすい文章にすることが重要です。さらに、結論を支える根拠を複数出すことが求められます。そして、理解を得たい相手が何を気にするかを考え、そのポイントを押さえた根拠を提示することが重要です。 説得力を増すには? また、説得力を増す手法として以下の点を学びました。主語、述語を正しく使うこと、短文で分かりやすくすること、結論を先に述べ根拠をあとにすること、根拠の観点が何であるかを意識すること、そして思いついた根拠の対となるものを考えることです。さらに、根拠を具体化することも重要です。 一方で、自分が根拠として具体化して出した例は根拠として弱いものでした。模範解答のような強い根拠を出すためにはどうすれば良いのかを学ぶ必要があると感じました。 学びをどう活かす? 自分自身の思考の整理やそれを伝える必要がある場合に今回の学びを活用できると思いました。具体的には、上司や部下、関係部署への説明、メールやチャットでの投稿、アプリ開発や販売施策における優先順位決めや実施判断、会議の内容整理などです。 また、具体的な手法をいくつか学べましたので、後輩指導時にも活用していきたいと考えています。 効果的な手法とは? 例えば、検討や整理の際にはピラミッドストラクチャーを作ること、根拠の観点が何かを考えること、また他の強い根拠となる事例がないかを検討することが有効です。説明や伝達の際には、伝えたい内容を最初に述べること、そして主語述語を正しく使うことが効果的です。 実践の大切さを学ぶ 今回の学習については、自分自身でも落とし込めていない点が多く、グループワーク課題を行う前に振り返りが必要だと感じました。実際に行ってみることで根拠の観点がずれていたり、自分の考えを文章にすることで異なる結論が導かれることもありました。これにより実践することの大事さを改めて感じました。そのため、WEEK1の復習として考えたことを文章化し、WEEK3のスキル定着を図りたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

データ・アナリティクス入門

仮説思考で未来を切り拓く

仮説思考はどう? 今週は、仮説思考の重要性と、仮説を立てる際の具体的なポイントについて学びました。仮説とは、まだ十分に明らかでない論点に対して一時的に答えを設定し、それを行動や検証の出発点とするものです。単なる思いつきではなく、論理的な根拠に基づいた取り組みが求められると実感しました。 複数の仮説は必要? 仮説を立てる際は、一つに絞るのではなく、複数の仮説を用意することが大切です。それぞれが漏れや重複なく、論点を網羅していることが求められます。また、データを収集する際には「誰に」どのように聞くかという視点を持ち、主観や偏りのない情報を得る工夫が必要だと感じました。 仮説の効果は何? 仮説思考の意義は、検証マインドの育成や、発言・提案の説得力の向上、問題に対する関心の深化と主体的な行動、判断や対応のスピードアップ、そして行動の精度向上にあります。これらは、実際の業務に直結する価値ある視点であり、感覚や経験だけに頼らない論理的な思考が、結果として仕事の質を高めると実感しました。 トラブルにどう対応? 特に、現場でトラブルや進捗の遅れが発生した場合には、「なぜこうなっているのか?」という問いかけから複数の仮説を立て、原因を洗い出すことが有効だと感じました。例えば、工程が遅れていると感じた際に「人員が不足しているのではないか」「機器の稼働率が低下しているのではないか」「必要な資材が届いていないのではないか」といった仮説を言語化し、関係者と共有することで問題解決に近づけると考えています。 安全面はどう考える? また、現場で安全面に関する小さなヒヤリハットが発生した場合にも、単なる報告に留めず、「なぜ起きたのか?」という問いを立て、複数の仮説に基づいて現状を確認し、改善策を具体的に考えることが重要です。定例の会議や社内報告においては、結論のみならず、その背景にある「こう考えた理由=仮説」のプロセスを伝えることで、より説得力のある報告や提案が可能になると思います。 どう改善していく? 今後は、現場で何らかの問題に直面した際に、まず論理的に仮説を立て、それをもとに検証し、改善していくという思考の流れを、日々の業務に積極的に取り入れていきたいと考えています。

クリティカルシンキング入門

日常業務に革命を起こす三つの秘訣

思考の偏りをどう防ぐか? 人間は無意識のうちに思考に制約や偏りが生じるものであり、そのためには意識して偏りを起こさない思考方法が必要だと演習を通じて理解しました。テクニックとしてロジックツリーなども紹介されましたが、何のために使うのかという目的意識が大切であると学びました。講義内容もその後の学びを活用するためのイメージが重要だと感じました。 実践での活用ポイントは? より実践で活用するために必要なのは「頭の使い方を知る」「他者とのディスカッション」「反復トレーニング」の三つがポイントです。客観的な思考をするためには、例えば何か物事に着手する際に5Wを意識して、「なぜ」「何」「どうやって」などを考え、問題の焦点を把握することが効果的だと知りました。 新規業務フローの効率化は? 新規業務のフロー構築においては、業務移管を受けて新規業務として確認・管理する機会が多いため、移管時にヒアリングした既存フローに縛られずに、より効率化・高品質化を実現するためのきっかけにします。 現状業務の改善策は? 既存業務の改善については、現状のルーティン業務においてもクリティカルシンキングを用いることで、今の方法が最適なのかを問い続けることにより、更なる閃きや改善策が生まれると感じます。 クリティカルシンキングを意識するには? 業務引継ぎやミーティングの場においては、他者とのディスカッションの場が自分の思考の偏りと同時に他者の思考の偏りも意識する機会となり、よりクリティカルシンキングを意識するきっかけになると感じます。 日々の業務での偏り解消法は? 以前から直感的に行動を取ってしまうことや、自身の閃きや考えが経験上最善策だという認識が無意識に働いていましたが、今後は一つ一つの業務や行動の前にワンクッションを置き、自らの無意識な偏りを炙り出すルーティンを作り、実践していきます。知識として理解しても行動に反映させることは非常に難易度が高いため、自らの行動の起点になるような癖付けをしていきます。 ディスカッション前の準備の重要性 さらに、他者とのディスカッション前には、議題に基づいて自身の考えを書き出し、その内容に対して5Wで問いかける時間を作るようにします。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

「ポイント × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right