データ・アナリティクス入門

仮説で読み解く成功のヒント

仮説の基本は何? 今回の学習で、仮説について深く学びました。仮説とは、ある論点に対して一時的に立てる答えのことで、例えば、ノンアルコール商品の販売増加を見る際、対象となる消費者をビールが好きな運転者や妊婦などに分けて分析する、といった考え方が応用できると感じました。 仮説の役割はどう? また、仮説には問題解決のための仮説と、結論を導くための仮説があることを理解しました。時間軸として、過去、現在、将来の視点で検討していくこともポイントでした。 売れる理由は何? 具体的な例として、①なぜある商品が売れるのか、または売れていないのかについての仮説では、若い世代に人気で刺激的ではない味が影響している可能性や、商品が不安定なために安定した需要を得られていないのではないかといった視点が挙げられました。②なぜある地域や取引先で売れるのか、あるいは売れていないのかを考える際には、その地域に若い人が多いのか、高齢者が多いのかという点が仮説の根拠になり得るという点が印象的でした。 検証データはどう活かす? さらに、仮説を検証するためには比較可能なデータ収集が不可欠であり、アンケートを実施する際の設問項目の考え方や、どのようなアンケート内容が仮説と結論を結びつけるのに適しているかという点にも関心を持ちました。

データ・アナリティクス入門

データ分析で結果を出すための工夫

データ分析の目的を明確に データ分析を行う際には、以下の点を重視する必要があります。 まず、分析の目的を明確にすることが重要です。分析の本質は比較にあり、適切な比較対象を選ぶことが求められます。そのためには、どのような項目をどのように分析するかという仮説を立て、それに基づいてデータを集め、分析することが必要です。そして、目に見えないデータや事象も考慮しながら、見せ方(例えばグラフなど)にも注意を払います。 マーケティング成果発表の準備は? 分析をする際の初めのステップは、「誰に」「何を」伝えるためにこの分析を行うのかを明確に意識することです。特に、次の期のマーケティング部門の成果発表で伝えるメッセージを考えるには、この意識が不可欠です。 来期施策に活かす分析のポイント 次に、来期の施策の布石となるメッセージを考えます。そのためには、まずどういうメッセージが良いかを考え、会社の方向性を確認します。その方向性とメッセージがつながっているかを検証した上で、どんな項目をどのように分析するのが適切かという仮説を立てます。実際にデータを集めて集計し、仮説の正しさを検証します。 このプロセスを通じて、有効と感じた施策や取り組みを数値的な裏付けをもとに発表し、来期の施策に活かしていくことが重要です。

アカウンティング入門

事業目的が導く未来戦略

PL構造の意義は? PLの構造について学んだことで、事業のポイントの設定が評価に直結する一方で、調整すべき項目や工夫が必要であると理解できました。全体のバランスを考慮しながら、どこに重点を置くかを検討することの大切さを実感しました。 カフェ戦略はどう? カフェの事例を通じて、たとえば客数を増やすために単価を下げる戦略と、反対に客数が減少しても単価を上げる戦略が存在することを学びました。しかし、どちらの戦略を選択するかよりも、自分がどのようなカフェを実現したいかという事業の目的を明確にすることが何よりも重要であると感じました。 予算計画はどうする? 今週学んだ知識を活かすため、具体的には予算計画の場面で、事業の目的と投資対象をしっかりとリンクさせ、適切な予算編成を提案していきます。現在の事業内容と将来的な投資ポイントを正確に判断し、決裁者に分かりやすく説明して了解を得ることを目指します。また、予算作成時の資料に来年以降の事業戦略や投資ポイントを盛り込み、より適切な予算を確保できるよう努めたいと考えています。 戦略模索はどう? 加えて、各社のPL構造についても理解を深め、そこから得た知見を活かして、さらに有益な戦略を模索していく意欲があります。

マーケティング入門

学んだポジショニングで事業成長へ挑戦

ポジショニングによる成果とは? ポジショニングの重要性を理解しました。同じ商品でもターゲットを変えることで、これほどまでに売り上げを伸ばせる可能性があることを、ワークマンの事例を通じて学習できました。グリコのポッキーの例で軸を考えるのが難しいと感じていましたが、その後の動画学習で、軸は自社の特徴を2つに絞ることで訴求ポイントを作れば良いと学ぶことができました。 ポジショニングマップの活用方法 私はニッチな顧客層を対象としたBtoB事業に従事しているため、競合他社は多くありません。しかし、ポジショニングマップを作成することで、顧客への訴求力を高めていきたいと考えています。訴求ポイントの整理や取捨選択ができることで、営業力の強化にもつなげたいです。 顧客の声をどう活かす? 具体的には、 ① ポジショニングマップとパーセプションマップに差が生じていないかを、顧客の声を聴いて確認します。 ② 顧客が自社の何を魅力と感じているかを再確認します。 ③ 自社が伝えたい魅力にとらわれず、新しい軸で別のターゲット層が存在しないかを再調査します。 以上のステップを実行していくことで、より効果的なポジショニングを実現し、事業成長を目指したいと思います。

クリティカルシンキング入門

クリアに伝える見せ方の極意

視覚化で伝わる? 相手に内容を正確に伝えるため、視覚化の手法は非常に効果的です。色やフォント、適切なグラフ、効果的な図を活用することで、伝えたいことがクリアになります。ただし、やりすぎるとくどくなる恐れがあるため、バランスも大切だと感じました。 伝わる資料作りは? 特に学校の教員や学生を対象としたプレゼン資料や配布資料の場合、キャッチーなタイトルやフォント、色の選択に加えて、読み手が「本当に理解しやすい」資料作りを意識する必要があります。相手に理解を探させないため、メッセージを明瞭かつ具体的に伝えることが重要です。 グラフ表現はどう? また、過去に作成していた資料ではグラフの表現が一辺倒であったため、今後は伝えたい内容や目的に応じてグラフの種類や見せ方を工夫していこうと思います。タイトルやメッセージ、アイコンが伝えたい内容と一致しているか、フォントや文字の色が適切か、情報が過剰になっていないかといった点も、客観的に見直し改善するポイントです。 クリアな構成で安心? 以上の視点を踏まえ、今後の資料作成では、相手に理解を委ねず、探させないクリアなメッセージと視覚的に見やすい構成を常に意識していきたいと考えています。

データ・アナリティクス入門

数字で見つける仮説と検証の旅

データ検証の重要性は? 総合的な演習を通じて、データをもとに仮説を立て、その後検証する一連のループを体験できました。単に数字を見るだけでなく、What、Where、Why、Howといった視点を意識してストーリーを組み立てる重要性を実感しました。 A/Bテストのポイントは? また、A/Bテストにおいては、比較対象以外のすべての条件をそろえることが非常に重要であると学びました。この考え方は、売上が変化した原因や理由を、経験則ではなくデータに基づいて示す際に大変役立つと感じました。 仮説検証の飛躍は? さらに、仮説から検証への流れを飛ばして結論に至ってしまう傾向があるため、他の可能性や選択肢がないかどうかも十分に検討する必要があると気づかされました。同時に、キャンペーンや広告の有効度を測る際には、測定したい内容以外の条件を同一にすることの徹底が求められるという点も大切だと感じました。 論理構築はどう? 最後に、分析やストーリー作成においては、What、Where、Why、Howを明確にすることで、より論理的で理解しやすい内容にまとめることが可能になると学びました。

クリティカルシンキング入門

思考を整理する技術を身につける喜び

思考を整理するコツは? 分解を行うことで、自分自身の思考を整理することができることを学びました。また、MECE(Mutually Exclusive, Collectively Exhaustive)の概念や考え方についても学びました。日々の考え事に漏れや重複があることに気付けたのは大きな収穫です。これからは、事象の全体像を捉え、どのような切り口で分解すれば良いかを考えながら行動していきたいと思います。 新たな空間プロデュースで活用するには? 特に新しい空間をプロデュースする際に、ガイドラインの制定にこの考え方を活用する予定です。ルール作成の対象の全体像を把握し、どのような切り口で分解し、各個別事象に対してどのようなルール設定が必要かを取り組んでいきたいと考えています。 図式化で思考を深めるには? さらに、思考の枠組みをパワーポイントなどで図式化しながら整理していきたいです。施設の全体像を理解し、それを分ける適切な切り口をまずは案として出し、考える。その上で、現れた個別事象に対し、どのようなルールアサインが適切かを検討していきたいと思います。

マーケティング入門

顧客の本音を引き出す秘訣に迫る

顧客のニーズはどう深める? 顧客のニーズを深掘りし、ペインポイントを見つけることが重要で、その部分は顧客自身も気づいていないことが多いという点が非常に印象に残りました。確かに、表面的な満足に達した状態でさらに深い部分に気づくのは難しく、それをしっかり観察して具体化していくことが重要だと感じました。今回の動画や内容についても、とても楽しく進めることができました。 自社強みはどう見える? 自社が提供する商品やブランドについて、もっとお客様のニーズやペインポイントを探っていきたいと感じています。購入者へのインタビュー以外にも、さらに深掘りできる方法を見つけ出して実施していきたいです。また、自社の強みについても、社員の視点だけでなくお客様のイメージを聞き出し、見出していけたらと考えています。 調査内容はどう決める? デプスインタビューを企画したので、その対象者への調査内容を作成していきます。同僚とも結果を共有し、他社の事例などを参考にして調査内容を決定していきたいと思います。さらに、自社の強みをお客様から引き出せるかどうかについても、上司に相談してみます。

クリティカルシンキング入門

数字が紡ぐ革新のストーリー

パターンはどう見る? 観測された事象データの相関比較から、背後に潜むパターンや特徴を発見し、未知の事象に対しては予測や仮説を立て、具体的な施策を検討しています。各プロセスでは、項目と事象の関係をブレークダウンして文字化することが重要であると考えています。 施策の領域は? また、ブレークダウンする際の項目数が多いほど、検討すべき施策の領域が広がるため、PDCAサイクルの回転回数を増やすことが可能となり、成功に近づけると感じています。 協業の効果は? この手法は、協業候補先企業の事業分析や、外部要因・内部要因の分析、事業戦略、シナジー効果などのスライド資料作成時にも有効です。具体的には、データを分解して対象企業の各販売業界ごとの比率を明確にし、各業界の今後の市場成長率との相関を基にした売上推移シミュレーションのデータ化やグラフ化が求められます。 結論はどうする? さらに、パワーポイント作成時は「結論-論拠×3」という構成を意識し、スライドメッセージと添付グラフの配置にも工夫を凝らすことで、論拠の濃度と伝わりやすさを向上させています。

データ・アナリティクス入門

誰に聞くかで変わるデータの真実

誰に聞くべき? データ収集の過程では、まず「誰に」聞くかという点が重要だと感じました。意味のある対象から情報を得ることで、収集したデータの信頼性が高まります。 聞き取りはどうする? また、情報の聞き取り方も大切です。アンケートや口頭での聞き取りなど、目的に合った方法を用いることで、精度の高いデータにつながると実感しました。特に、比較するためのデータ収集を怠らないことが求められます。 反論排除は必要? さらに、「反論を排除する情報にまで踏み込む」という視点を、より一層意識すべきだと学びました。これにより、意見の偏りを防ぎ、客観的な分析が可能になると感じています。 仮説の確認は? アクセス解析の業務で日頃から仮説を活用しているとはいえ、今回の学びは仮説を立てる際のポイントを再確認する良い機会となりました。複数の仮説を検討し、決め打ちせずに異なる切り口から網羅性を持たせることが、より説得力のある分析につながると理解しています。 実践は続くの? 今後もこの考え方をしっかりと実践していきたいと思います。

データ・アナリティクス入門

実践で拓く改善と挑戦

A/Bテストの意義は? A/Bテストは、対象をA群とB群に分け、同時期に検証を実施する比較手法です。工程が少なく導入しやすいというメリットがありますが、比較するポイントを明確にし、他の要素を同一条件に保つ点に留意する必要があります。 時期の違いは問題? テスト対象が別の時期に実施されたものや、大きく異なる要素が含まれている場合、正しい比較が行えなくなるため、十分に注意しなければなりません。 品質会議の狙いは? また、品質管理や作業難易度に関するミーティングでは、参加者にアンケートを実施し、普段の作業の正確さや改善への意識について意見を集めることで、今後の品質管理ミーティングや改善提案に役立てることができると考えています。 学びをどう活かす? 今後は、A/Bテストを活用できるテーマとターゲットを決定し、本日の学びを実践していく予定です。仮説を立てることを前提とし、提案内容が部門方針に合致しているかを意識するとともに、ターゲットが大きく異なる複数の要素で構成されていないことを確認して進めていきます。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。
AIコーチング導線バナー

「ポイント × 対象」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right