戦略思考入門

データで切り拓く挑戦の未来

客観データで説得? 今週の学習では、課題解決において感情論ではなく、客観的なデータに基づく論理的な分析と、それを「人に伝わるように」表現することの重要性を実感しました。タクシー業界のデータ分析を通じ、漠然とした問題を具体的な数値で把握し、多角的に解決策を検討するプロセスを学び、複雑な状況下でも本質を見抜き、説得力ある提案につなげる力が不可欠であると再認識しました。 外食業界で活かす? さらに、今回の学びは外食業態での仕事に直結すると感じています。従来は感覚に頼っていた新メニュー開発や既存メニューの見直しを、POSデータや顧客アンケートを活用して売上低迷の原因と潜在ニーズを客観的に特定するアプローチに変えます。たとえば、特定の時間帯に売れ行きが低迷しているメニューがあれば、その原因を徹底的に追求し、価格や食材、提供方法の見直しなど、多角的な対策を講じることで収益性向上を目指します。 集客戦略はどう? また、店舗の集客戦略にも学んだ手法を応用できます。近隣の人口構成や競合店の情報を分析することで、ターゲット顧客を明確にし、若年層にはSNSプロモーション、高齢者層にはデリバリーサービスといった、ニーズに即した戦略的な広告・宣伝活動を展開することが可能となります。 実践計画の工夫は? これらの学びを実践するため、以下の具体的な行動を計画しています。まず、毎日終業後にPOSデータをメニュー別、時間帯別、客層別に分析し、特に大きな差異が見られる点についてその原因を徹底的に追究する習慣をつけます。次に、週に一度、近隣の競合店のメニュー構成や価格、プロモーション情報をオンライン等で確認して、自店との比較分析を行います。さらに、月に一度、主要メンバーと共に売上データや競合情報を共有し、論理的な意見交換を通じてデータに基づく課題解決策を議論する「課題解決ランチミーティング」を実施します。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

戦略思考入門

営業戦略の新しい道筋を探る

顧客対応の優先順位はどう決める? 利益率やタイムパフォーマンス、そして将来の顧客成長率などの定量的なデータを基に、顧客対応の優先順位を決定していくプロセスについて理解が深まりました。一方で、これまでの担当者との人間関係といった主観的な要因を考慮に入れて「捨てる戦略」を採用することは、日本の商慣習の中では難しいと感じています。 文化的要因はどう分析する? 総評として、利益率やタイムパフォーマンスの理解が進んでいることは素晴らしい成果です。文化的な違いによる商習慣の難しさも重要な視点です。文化的要因をさらに具体的に分析することで、理解が一層深まるでしょう。 営業戦略に必要な仕組みは? 今回の学びから、営業戦略を練る際には、自社の営業先ターゲットのタイムパフォーマンスをしっかり把握し、売上の最大化につながる仕組みを構築する必要があります。具体的には、余分な人的リソースを投入すべきかどうかを営業戦略にしっかりと反映させ、判断できる体制を整えることです。 主観と客観のバランスは? また、営業管理ツールのダッシュボード機能を活用し、顧客別の売上や構成をチームで分析することが重要です。この際、客観的な判断基準だけでなく、これまでの顧客との関係性などの主観的な情報も加味した判断基準を設けることで、営業戦略の立案に役立てることができます。 捨てる戦略に影響する要因は? さらに思考を深めるために、日本と他国の商習慣の違いがどのように捨てる戦略に影響を与えるのかを具体的に考えてみてください。また、顧客の優先順位を決定する際に、主観的な要因と定量的な要因をどのようにバランスさせるかについても考察を深めてみてください。 洞察を実践へどうつなげる? 最後に、今回の洞察を基に具体的な状況分析を行い、それを実践につなげられる方法を模索してみてください。引き続き、頑張ってください!

アカウンティング入門

数字の裏側に迫る経営革新の道

数字の背景を見た? 今週の学習で特に印象に残ったのは、財務数値の見方が「数字そのもの」ではなく、その背景や因果関係に着目することの重要性です。P/Lについては、売上や利益額だけでなく、利益率やコスト構造を確認することで、どこで利益が発生し、どこに改善の余地があるのかを探る視点を学びました。一方、B/Sでは、負債と資本という資金調達方法と、資産としての活用先を対比することで、資金繰りや経営の安定性を判断する手法を理解しました。さらに、P/LとB/Sを関連づけて分析することで、企業の全体像を立体的に把握できる点も大変有意義でした。今後は、こうした視点を業務改善に活かし、改善策が利益率や資金繰りにどのような影響を与えるかを明確に示せるよう努めたいと考えています。 活かす場面は何? ① 活用したい場面 請求・入金フローの改善やコスト削減の提案の際に、学んだ視点を活用したいと考えています。たとえば、請求処理の誤り削減や入金遅延の改善に取り組む際、P/Lの視点では改善による利益率向上、B/Sの視点では資金繰りや運転資本の改善効果を具体的な数値で示すことが可能です。 提案は伝わる? ② 学びを活用している姿 実際に改善案を経営層や関係部署に提示する際には、売上総利益率や回収サイトの短縮日数など、具体的な数値を用いて説明しています。その結果、「この改善により年間○○円のコスト削減や資金回収の短縮が見込まれます」と示すことで、提案の根拠が明確になり、納得感が高まっています。 改善行動は具体的? ③ 具体的な行動 月に一度、自部署のP/L・B/S指標(利益率や運転資本)を確認し、改善余地を探る習慣を取り入れています。また、各業務改善案ごとに数値効果を試算するフォーマットを作成し、改善施策の実施前後で数値を記録・比較することで、効果を可視化できる体制を整えています。

クリティカルシンキング入門

小さな視点、大きな発見

データはどう見える? 一次データだけでは見えてこない傾向があるため、データをさらに細かく分け、グラフなどのビジュアル資料で確認することが重要です。 切り口の意味は? 刻み幅や意味のある切り口に基づく分け方を意識し、仮説を立てながらデータを整理することで、分け方によって異なる結論が導かれる点に注意が必要です。 全体像の正確把握は? 分解して検討した結果、特徴的な傾向が浮かび上がったとしても、それが全体を示すものではありません。すぐに結論を出さず、自分自身を疑う姿勢を持ち、思考の制約にとらわれないよう心がけることが求められます。MECEの考え方を活用しながら、全体を部分に分ける階層分解、売上を単価と数量に分ける変数分解、そして業務プロセスごとに分けるプロセス分解の手法を上手に使い分けるとよいでしょう。 分析の焦点は? 例えば、変数分解を用いてメンバーそれぞれの売上傾向を分析する際には、まず優れた成績の例と比較して単価や数量のどちらに課題があるかを明確にします。単価に問題がある場合は、コンタクト先を階層分解してどの層へのアプローチが不足しているのかを検討し、販売数量に問題がある場合は、プロセス分解を通じてどの業務プロセスに時間がかかっているのかや課題が潜んでいるのかを明確にすることが効果的です。 販売戦略の再考は? また、商品販売では、階層分解を活用して販売好調な商品の傾向を把握することが重要です。購入者を細かく分けることで、より明確なターゲット層を設定し、戦略の見直しに役立てることができます。 成果と速度の両立は? 実際の業務では、質の高い成果とともにスピードも求められます。トレーニングの積み重ねによって両立が可能だと考えていますが、実際の業務でどのように質とスピードを両立しているか、具体的な方法があればぜひお聞かせいただきたいです。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

クリティカルシンキング入門

データ分析の新発見と発想転換の旅

データ分析の工夫は? 今週の講義では、多くの気づきがありました。まず、データ分析においては、単にデータを眺めるだけでなく、少し手を加えることが重要だということです。具体的には、販売戸数と単価の組み合わせで売上を構成する新しい項目を作成したり、数字を視覚化するためにグラフを使ったりすることです。これまでの自分には、そうした手間をかける習慣がなかったことに気づかされました。 分割方法はどうかな? データの分割方法についても新たな視点を得ました。従来は年齢別に10歳ごとで分けていましたが、大学生に焦点を当てた18歳~22歳の分割や、4歳ごとの分割法を知り、新鮮な驚きがありました。こうした視点の転換は、日常業務にも活かせると感じました。 分解の効果は? 博物館での演習を通じて、分解を重ねることで新たな洞察が得られることがわかりました。ただ満足するだけでなく、さらなる分解が重要だと認識しました。講師からも、迷ったらとにかく分けてみること、特徴的な結果が出なければそれは次のステップだという考え方を学び、大変共感しました。 MECEは本当に有効? 最後に、MECE(漏れなくダブりなく)の考え方について学びました。今後、業務で悩んだ際には、この考え方を基に問題を整理していきたいです。 来店客の傾向は? 店舗に来店するお客様を分析することで、今後の店舗運営に役立つアイデアが出てきそうです。現在、来客数が減少している問題があり、分析を通じてその原因を探ることが必要です。スタッフの協力を得ながら、効果的な施策を考えていこうと思います。 学びの実践方法は? 今回学んだ手法は、①手を動かす、②機械的に分けない、③複数の切り口を試す、④悩むくらいなら分ける、⑤失敗は次のステップ、⑥分けることで分かる、というステップで進めていくことが重要だと実感しました。

データ・アナリティクス入門

データ分析の要点と活用法を深堀りするコツ

Week6での気付きは? Week1から学んでいたことが、ようやくWeek6で腑に落ちた感じがしました。 仮説思考の重要性とは? ライブ事業では、ストーリーを立てて分析する方法を具体的に学びながら復習することができました。 よい分析のためには「仮説思考」が重要です。まず目的を明確にし、問いに対する仮説を立てます(例:打率ではなく失塁率が高い選手が原因ではないか)。次にデータを収集し、その仮説をデータで検証します。仮説がデータにより証明されなければ、新たな仮説を立て直します。 データ収集はどう進める? データ収集の手段としては、検索エンジンや公開データ、アンケートやABテストなどがあります。 分析を進める際の5つの視点として、以下の点が重要です: - インパクト:影響度の大きさ - ギャップ:何がどのように違うのか - トレンド:時間的な変化の傾向 - ばらつき:分布に隔たりがあるか - パターン:法則性があるか WEBマーケティング分析のポイント グラフ化のステップとしては、まず仮説やメッセージを明確にし、比較対象を決めて、適切なグラフを選びます。 WEBマーケティングの売上に繋がりやすい顧客の分析には、以下の点を考慮していきます: - 企業規模や購入製品群(リピート購入か、多種製品群を購入しているかなど) - 地域による差異 - 製品の月別の差異 - 顧客情報の獲得経路の有効性 これらをMECEに分解し、先入観を避けつつ仮説検証を進めます。 来月以降、少し余裕ができるので、上記の分析を進め、WEBサイトの改善を図ります。ロジックツリーの活用で細かく分解しつつも、Week6の講義にあったとおり、目的に必要な分析範囲を見極めたいと思います。また、メンバーに説得力のあるプロセスを踏み、説明することも重視したいと思います。

データ・アナリティクス入門

仮説力で見える未来のカタチ

仮説検討は効果的? フレームワークを使って仮説を検討する重要性を改めて実感しました。自分の視点だけで考えると、異なる仮説が実は同じ意味を持っていたり、抜け漏れや重複が生じ、MECE(漏れなく、ダブりなく)にならないことがあると感じました。また、業務では自社の既存データを中心に扱っており、外部のデータと比較する機会が少ない点にも気づきました。一般的なデータにも注意が必要で、信頼性が低かったり数値が大げさに見せられるケースもあるかもしれません。こうした状況だからこそ、学んでいる知識を活かし、有効なデータと信頼できる情報源を見極める必要があると思いました。 動画から何を学ぶ? 先週のグループワーク後に視聴した関連動画で紹介されたさまざまなグラフや分析手法も非常に参考になりました。自分がこれまでなんとなく実施していた方法が当てはまる部分もあれば、これまで注目していなかった視点に気付くこともあり、改めて復習する意欲が湧きました。 実務で新発見は? 実務では、指示通りに同じグラフを作成することが多い中、自分自身でフレームワークを活用して仮説を立て調査することで、新たな発見につながる可能性を感じています。現在の職場では、これまでにない未来的な取り組みが多く、自社の過去のデータだけでは捉えきれない視点が必要だと再認識しました。大きな歴史的流れに沿った視点も、今後の改善に大いに役立つと考えています。 改善策の検証は? まずは、フレームワークを用いて「どの部分が改善され、会社の売上に貢献できるか」という仮説を立て、データの収集と検証に取り組みたいと思います。また、データだけに頼らず、職場の改善点や取り組みについても多角的な視点を持って検証することで、会社全体の業績向上だけでなく、自分自身の成長につながる発見があると期待しています。

クリティカルシンキング入門

イシューを見極め仕事を効率化するコツ

イシュー特定の重要性を再確認 イシューを特定することの重要性は認識していましたが、時折特定しきれないまま進行していることがあります。また、意識しないとイシューからズレてしまうことが多いため、常にズレていないかを確認しながら進めていくことが大切だと感じました。 具体的には以下の点を今後意識して習慣にしていきたいです: - 問いの形にする - 具体的に考える - 一貫して抑え続ける 問いの重要性とは? さらに、相手の話を聴くときには、「問い」なのか「問いを解決するプラン」なのかを整理しながら聴くことが重要だと学びました。これをコーチングにも活かし、学んだステップで考え行動できるよう促したいと思います。 慌ただしい日々の中で、今この時間「何について話をしたいか」=「問い」が明確だと、前提も整いやすく、効率よく仕事を進められると感じました。 収益構造の変化に適応するには? この一年で収益構造が大きく変化しているため、従来の方法では利益を生み出すことが難しくなっています。売上を伸ばし無駄を省くためのイシューを特定し、チームメンバーと解決方法を協議しながら進める際に、今回の学びを活かしたいと思いました。 クリティカルシンキングを活用する これから来期の優先事項を決めプランを作成する際に、今回学んだクリティカルシンキングを活かしたいです。特に「問いを立てる」ことが重要だと実感しました: - 問いから始める:現状を整理し問いを立てることを意識する - 問いを残す:問いを意識し続けるために見える化し、プラン進行中に目的に立ち返ることができるようにする - 問いを共有する:組織全体で方向性を共有するために、視覚や言葉で伝わる資料を作成し、メンバーに合わせて伝え方を工夫する 以上の点を踏まえ、今回の学びを仕事に活かしていきたいと思います。

クリティカルシンキング入門

スライドで差をつける技術とは?

どう伝えるのが良い? 同じメッセージでも、スライドでの表現方法によって、内容が読まれるかどうかが大きく変わることを改めて感じました。伝えたいことが決まったら、文字の強調や色の使い方、適切なグラフの選択が重要です。特に強調表現(太字や斜線)や、文字の色使い(青=肯定的、赤=注意やネガティブ)を工夫し、誰が見ても違和感なく理解できるよう心がけるべきです。 何を見せれば正解? スライドを丁寧に作成することは、根拠となる情報を一目で理解させるために欠かせません。例えば、売上の60%以上を占めることを伝える際に売上構成比を見せないのは問題です。グラフを作成する際には、メッセージのどの部分を補強するのかを意識する必要があります。 本当に伝わってる? ビジネスライティングは経験があればできると思いがちですが、実際にはできていない人も多いです。自身のスキルを見直し、読まれるスライドを作ることを心がけたいと思います。クリティカルシンキングで検討した内容をスライドに適切に反映できないと意味がありません。ビジネスライティングとクリティカルシンキングは関連があり、重要です。 どう説明するの? 自身のプロジェクトを上長や他部署に説明する際、スライド作成が必要です。今回学んだことを活かし、メッセージと根拠が一致しているかを確認しながら、スライド作成に取り組みます。また、会社にあるスライドに関する指針と今回の学びを融合させることで、効果的なスライドを作成したいです。作成後は、学んだことと会社の指針の二つの視点でチェックを行います。 見た目は大丈夫? 文字の色や強調表現については日頃から意識しているため、スライド作成時には必ず実施し、最後に確認を行います。学んだポイントを反映したチェック表を作ることで、適切にチェックできるようにする考えです。

データ・アナリティクス入門

3W1Hで見える課題発見の瞬間

プロセスの意味は? WHAT・WHERE・WHY・HOWという問題解決のプロセスを理解できました。実践演習では問題と対策を混ぜて考えてしまったものの、3W1Hを用いることで思考が整理されると感じました。ただし、問題を特定するための良い問いを思いつけるかどうかは課題と感じ、今後の研修中に学びを深めたいと思います。 ロジックツリーとは? 問題を特定するには、ロジックツリーを用いて要素を分解する方法が効果的です。現状を図解しながら現場把握を進めることで、抜け漏れを防ぎ、問題発見のきっかけにもなると実感しました。 改善の手法は? また、あるべき姿と現状を比較し、何が問題で、どの部分を改善すべきかを考えるアプローチは非常に有効です。MECEの原則に注意を払いながらも、完全なもれなくダブりなくを目指すのは難しく、目的と手段が逆転しないよう、今後更に意識して取り組みたいと感じています。 評価の見直しは? 中間評価の時期において、目標と実績の乖離が見られる場合は、文章のみの報告ではなく、ロジックツリーなどを用いて状態を可視化することが重要です。こうすることで、どの問題に取り組むべきかを明確にし、下期に向けた目標値の妥当性や追加施策を再考することができると思います。 データの意義は? また、毎日配信される売上データは、チェックや比較を通じて変化に気付き、疑問を持つ力を養うのに最適な題材だと感じています。 情報不足の理由は? 最後に、問題解決のためにデータベースを確認すると、必要な項目が不足していたり、詳細なデータが得られなかったりするケースがあります。逆に、無駄な項目が多い場合もあるため、組織全体で問題を洗い出し、ロジックツリーを活用しながら必要なデータを蓄積できるよう、項目の設定に努めたいと思います。

「売上 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right