データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

データ・アナリティクス入門

現状と理想のギャップを読み解く

現状と理想の違いは? 問題解決に取り組む際、まず現状(asis)と理想(tobe)のギャップを明確にすることが重要だと感じています。表面的に見える現象だけでなく、その背後にある根本原因を探ることで、対策すべき点を的確に把握できます。 分類基準は何? また、ロジックツリーやMECEの手法がよく話題に上りますが、どの要素を基に分類するかが肝心だと思います。実務で経験を積むことで、こうしたスキルをより一層進化させたいと考えています。 本当の課題は? クライアントの悩みを聴取する際には、単に表れる問題だけでなく、理想と現実のギャップやロジックツリーによる分解を用い、悩みの底にある本当の課題を見極めることが重要だと思います。 多角的切り口は? また、解説動画では「ヒト・モノ・カネ・情報」や「モノ・サービス・換金性のあるもの」など、さまざまな切り口での分析手法が提示されていました。こうした定石は業務において常に必要なものですので、しっかりと身につけたいと感じています。 原因分析の視点は? さらに、売上が落ちた際の原因分析として、季節ごとや販売チャネルごとといった視点が有用であることも学びました。こうした多角的なアプローチは、今後の業務において大いに役立つと実感しています。 多分野の学びは? 自分は特定の業界に特化していないため、さまざまな分野でどのような課題に取り組むのか、他の受講生や業界関係者と意見交換を重ねながら学んでいきたいと思います。

アカウンティング入門

仲間と数字で切り拓く未来

専門家だけで大丈夫? 文系でありながら体育会系だった私には、人と接することに長けているという強みがあり、自ら空手教室を立ち上げ、売上の向上に努めてきました。しかし、事業拡大を進める中で、自社の経営状況については税理士や会計事務所に任せ、その専門家からのアドバイスを受けるだけで十分だと考えていました。ところが、そのやり方だけではさらなる事業拡大につながらないと感じ、今回の学びを決意するに至りました。グループワークでは、多くの優秀な方々と出会い、最初は不安もありましたが、皆さんも同じような課題を抱えて学びに参加していることがわかり、安心感を得ることができました。 支出の財源はどうする? まず、新たな支出として、テナント、人件費、消費税の支払いが必要になるため、既存事業の見直しによる財源確保が不可欠です。そして、その上で必要なヒトやモノに投資し、事業を拡大していく計画です。 数字に基づく判断は? また、現状では財務諸表を十分に理解できていないため、今回の学びを通じてその理解を深め、数値に基づいたエビデンスをもって、新たな支出や新規事業に対する経営判断を下せるようにしたいと考えています。 計画書作成はどう進む? さらに、予算書の作成や、銀行へ提出する事業計画書の作成にも取り組み、資金調達のための体制を整えたいと思っています。 課題の共有は有効? 皆さんも、それぞれの業務で抱えている課題をぜひ共有し合いながら、自社の経営改善につなげていければと考えています。

データ・アナリティクス入門

問題解決の視点で成長する方法

何が最優先? 問題解決の考え方では、まず最も重要な問題を特定することが大切です。「何が問題か?」という視点から始め、数値を比較して問題の所在にあたりをつけます。また、理想の計画と現状の未達成状況を把握し、そのギャップを埋める方法を検討します。数値の比較では、見る必要のない範囲を見極めて効率的に分析を進めることも重要です。 現状はどう捉える? 現状把握の際には、問題をさらに深掘りするための切り口を考え、その仮説や優先順位をつけていきます。この過程では定性的な情報も取り入れることが重要です。特に、数値に頼りがちな初期の分析では、仮説の形成において定性的な情報を活用することが印象的でした。 分解して見える? ロジックツリーの層別や変数の分解を用いて課題に取り組むと、目標達成のための具体的な施策が見えてきます。たとえば、採用施設数や売上の向上、コストカットといった課題に対処する際は、変数分解の考え方が役立ちます。また、メーカー推奨品の効果を確認する際には、計画と実績を数値で評価し、感覚的な良し悪しに頼らず客観的に判断することが求められます。 分析の工夫は? 分析を進める際には、「見なくてもよい範囲・数字・切り口」を適切に除外することで、効果的な分析が可能になります。データの切り口についても、何が効果的か考え、必要であれば追加のデータ取得を検討します。また、チームメンバーとアイデアを共有し、他に異なる切り口の可能性がないかを確認することも重要なプロセスです。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

アカウンティング入門

数字の裏側で輝く経営戦略

利益の意味を探る? 利益という観点から考察する際に、5つの側面それぞれが持つ意味や違いについて理解を深めることができました。単に売上や費用といった数値を追うのではなく、顧客にどのような価値を提供しているかを分析する重要性を改めて実感しました。 数字で見える特徴? また、利益を軸としてその根底にある数字から事業の特徴を捉える方法は、非常に興味深いものでした。各数値の妥当性を検証するために、同業他社との比較を通じた客観的な視点が大切であると感じました。自社での状況と照らし合わせながら、数値の背後にある意味を具体的に想像することが、経営判断において重要なプロセスだと学びました。 環境要因で差が出る? さらに、顧客から実際にお金を支払ってもらえる基盤として、立地などの環境要因が果たす役割にも気付かされました。例えば、ある業態においては、単に基本的な品質や高級感を提供するだけでなく、特定の差別化要因を取り入れることで、付加価値を高めることが利益向上に繋がることが印象に残りました。 価格設定はどうすべき? また、売価設定の難しさについても考えさせられました。利益管理の観点から、どのような価格設定が適切なのか、その根拠となる数値をどのように仮定し、検証するのかが経営の一大課題であると感じました。さらに、業績連動型の制度を取り入れている企業において、どの指標を業績評価に用いるのか、そしてその理由を明確にすることで、組織全体の意識改革にもつながると考えています。

アカウンティング入門

経営と教育の架け橋を築く挑戦

カフェ経営とビジネスの共通点とは? カフェの経営は、自分のビジネスである習い事教室の経営に近いため、とてもイメージしやすかったです。ビジネスを始める際にまず大事なのは、「どんな価値を提供したいか?」という軸を決めることだと改めて実感しました。 適正な利益をどう設定する? 私のビジネスにおいては、売上を上げつつ、費用も管理し、その上で適正な利益を残すことが目標です。しかし、どれくらいの利益が適正なのかはまだ定まっておらず、それが経営上の課題となっています。今後は、同業他社の調査も行いたいと考えています。 損益計算書の見直し計画 具体的な取り組みとして、損益計算書を詳細に見直す計画です。これは私だけでなく、正社員スタッフも理解できるよう、研修を通じて共有していきます。また、日々の経営判断に役立てるために、特に重要なのは、どのような人材をどのように雇うかということです。私たちの目標は質の高いレッスンを提供することなので、それにじっくり取り組んでくれる人材を確保・育成する必要があります。 長期的な人材育成の重要性 人材育成には時間がかかるため、本業として長期にわたり働いてもらえる人を雇うことが重要です。まずは、現在のスタッフ教育から始めます。教育の具体的な内容はすぐには決められませんが、まずは2名の正社員のリテラシーを高めることが初歩です。そのために、私自身も学び続けています。現在は、アカウンティングについてしっかり学ぶことに注力しています。

データ・アナリティクス入門

正しい問いが導く解決の鍵

何が問題と捉える? 問題解決のプロセスには、まず「何が問題か(WHAT)」を明確にすることが基本であり、その後に課題の位置(WHERE)や発生原因(WHY)、そして具体的な対策(HOW)を検討する流れがあると学びました。 本質はどう捉える? 普段、私は問題が起こるとすぐに「どのように対応するか(HOW)」を考えてしまいがちです。しかし、本質的な解決策を導くためには、まず問題自体を正確に捉えることが重要だと実感しました。その際、基本となる「比較」を行うことで、どの部分に大きなギャップがあるかを見極めやすくなります。 経営結果の謎は? また、年次の経営結果を分析する際も、まず何が問題なのかを探ることが肝心です。例えば、利益が上がらない原因が売上の減少にあるのか、費用の増加によるものなのかを明確にし、どのカテゴリー、どの購買層、またはどの部門に起因しているのかを整理することが求められます。そして、その整理された課題に対してどのような対策を講じるかを段階的に考えていくことが大切です。 問いの作り方は? 最も難しいと感じたのは、問題そのものを見つけ出すための適切な問いを立てることです。正確な問いがあれば、フレームワークに沿って段階的に解決策を導き出すイメージが湧きます。しかし、感度の高い問いが立てられなければ、効果的なロジックツリーを作成することも困難になります。今後は、この問いを立てるコツをより一層習得していきたいと感じました。

データ・アナリティクス入門

数字に隠れた学びのヒント

全体の流れは? データの分析にあたっては、「what」「where」「why」「how」を意識し、細部に目を向けながら全体の流れを把握することが大切だと感じました。平均値を確認する際にはばらつきも捉え、代表値を選ぶときには元データの傾向を十分に理解することが、全体像(森)を見渡す鍵になると実感しました。 仮説検証の進め方は? また、データから得られた示唆をもとに、さらに分解して仮説検証を進めるプロセスが重要であると感じています。単に数字を追うのではなく、その裏にある人々の行動や意図をイメージすることで、より深い理解へとつながると気づかされました。 アンケート設計はどう? 加えて、アンケート設計において「どちらでもない」を選ばせない工夫が、回答者の意見をより明確に捉えるために有効であるという点も良い気づきでした。こうした取り組みは、得られる情報の質を高め、後の分析においても大いに役立つと思います。 EC分析の鍵は? さらに、ECにおける顧客、商品、売上といった各視点のデータ分析に、この学びを応用していきたいと感じています。実習課題では前年との比較を行い、特定の商品カテゴリでの売上低下など、数多くの視点から分析する方法を学びました。昨年と今年の売上推移、売れ筋商品のトレンド、併せ買いの傾向、そして商品における顧客属性の違いなどを比較することで、売上が低下した場合のリカバリー対策の策定にも役立つ視点を得ることができました。

クリティカルシンキング入門

問いが導く本質成長のヒント

最初の問いは何が肝心? どのように問いを立てるかが、後の方向性を決定する点で非常に重要だと実感しました。特に、売上や利益といった会社の重要な数値を扱う際には、最初の設定ミスが大きな損失に繋がる可能性があります。そのため、これまで学んだ数値の分解方法や見せ方、捉え方を活かし、方向性の誤りを防ぐことが求められると感じました. データをどう見極める? また、マーケティング施策においてデータや事実を根拠に現状を客観的に把握し、問題点を明確化できるようになることが大切だと考えています。時に、マーケティング調査や課題抽出が疎かになり、施策の実施自体が目的化してしまうことがあります。そこで、最終的な目的を明確に定め、PDCAサイクルをしっかりと回して結果に結び付ける施策を構築していきたいと思いました. 本質理解はどう深める? これまで、業務上の問題に対しては一時しのぎの解決策に留まり、物事の本質にまで踏み込めていなかったと反省しています。映像教材で取り上げられた中途採用のケースは特に印象深く、自分にとっても大きな学びとなりました。課題が発生した際は、単に解決策を考えるのではなく、なぜその課題が生じたのか、イシューを正しく捉えることが重要だと痛感しました. 多角的な視点はどう活かす? 今後は、常に「なぜ?」と問いかけ、安易な結論に飛びつかず、複数の視点から問題にアプローチする姿勢を実務においても維持していきたいと考えています.

データ・アナリティクス入門

多角的な視点で学び直すビジネス分析技術

講座で再確認した3つのポイント 今回の講座を通じて、以下の3点について再確認することができました。 まず、多角的に分析・比較することの大切さです。次に、自分の目線ではなく、聞き手の目線や聞き手の属する組織の目線に合わせることの重要性です。そして、聞き手が普段から利用している分析の観点を押さえておくことで、話が通じやすくなることも理解しました。 保有案件と市場調査の具体的学び 具体的な学びとしては、以下の内容が挙げられます。 まず、保有案件の分析です。案件のコンディション別に受注確率を算出し、保有案件量を確度別に分類して先週との差異を出しました。また、市場調査においては、マーケット分析を自動化する手法を学びました。 売上分析と満足度調査の手法 次に、売上分析に関しては、特定マーケットに対する自社の製品・サービス別の売上を整理する方法と、その自動化について学びました。お客様満足度調査では、データを用いて定量的に経年比較を行う生産性の高い分析方法を習得しました。 実務での応用と課題解決の姿勢 さらに、新しく作成した分析結果の表やグラフをわかりやすくする方法についても学びました。 これらの考え方や手法を実務で試みました。特に、頻度の高い業務である保有案件量の分析で実践し、課題を発見。その課題を講座で確認し、解決を図る姿勢を持ちました。講座内で解決が難しい場合には、職場の周囲から教わり、解決する方針としました。
AIコーチング導線バナー

「売上 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right