データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。

クリティカルシンキング入門

MECEで問題をスッキリ解決する方法

物事を分解する学びの重要性とは? 物事を分解する方法について学んだことが非常に有益でした。まず、全体像を明確に定義し、目的に沿って切り口を設定し、MECE(漏れなく・ダブりなく)の原則を用いて事象を分解します。これには、「層別分解」、「変数分解」、「プロセス分解」の3つのパターンがあります。 分解手法の具体例をどう活用する? 層別分解では、「年齢別」、「性別」、「季節別」といったように、特定のカテゴリーごとに事象を分けます。変数分解では、「売上=客単価×客数」のように、事象を構成する要素に分解します。プロセス分解では、ある事象のプロセスを詳細に書き出し、そのどこに問題があるのかを分析します。 MECEが導く次の一手は? 分解する際には、異なる視点が混在しないよう注意し、まずは試みてみることが重要です。たとえ分解した結果、特筆すべき点が見つからなかったとしても、それは「ここには差がなかった」という価値があり、他の観点での分解につなげることができます。失敗と捉えず、次の行動に繋げることが大事です。 これを売上分析に応用すると、例えば「年齢別」、「性別」、「季節別」に層別分解したり、「売上=客単価×客数」という変数分解を用いたり、プロセスの中の問題点を探るプロセス分解が有効です。 DX人材育成にMECEはどう役立つ? また、DX人材育成に関する施策を進める際の根拠としても使えます。例えば、社員のデータ活用率を上げることを目的に、現状を把握し、MECEを活用して問題点を明確にすることで対策を立てることができます。 意思決定の効果をどう高める? 意思決定時には、情報をMECEで分類し、優先順位を決める手法が活用できます。これにより、どの情報を基に判断すべきかが明確になります。また、プロジェクト進行中に意見が割れた際には、目的を再定義し、網羅的に議論ができているか確認することで、考慮漏れがないかをチェックすることができます。 このように、MECEの原則を用いることで、さまざまな問題や課題を効果的に分解し、具体的な対策や判断を導き出すことができます。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

マーケティング入門

見えないニーズ発見の秘訣

顧客の視点はどう? 商売の基本は、常に顧客の視点に立ち、ニーズに応えることだと改めて感じました。一般的なニーズはどこにでもあるため、競合他社との差別化が難しい面があります。しかし、潜在的なニーズをしっかりと追及し、そこに応えることで、競合が少なく大きな成果につながる可能性が広がります。つまり、「潜在的ニーズを探る」という姿勢を意識的に持つことが重要です。 自社の強みは何? また、自社の強みと顧客の潜在的ニーズを掛け合わせることが、最も効果的な戦略だと考えています。自社の強みが何であるかを見極めた上で、それを活かした施策を考えることで、より大きな成果を上げることができるでしょう。そして、顧客が抱える「痛み」や「困りごと」に対して具体的な価値(ゲイン)を提供することも不可欠です。これは、顧客だけでなく自分自身の体験を振り返り、課題解決のヒントを得るための大切な視点です。 現場のニーズは? 現場においては、最も顧客に近い位置で、彼らの潜在的なニーズを把握することが必要です。たとえば、売上対策としては、レジや売場、実際の問い合わせやクレームの中から隠れた要求を見出すことが挙げられます。一方で経費対策としては、従業員の抱える問題や困りごとをヒアリングし、大局的な解決策に結びつけることが求められます。私自身、以前から顧客の潜在的な要求について記録し、対応策を考えてきましたが、本部へ伝える際のハードルが高いと感じることもしばしばありました。新入社員でも顧客目線で提案や企画ができる仕組みを整えることは、皆にとって貴重な訓練となり、後の展開に大きな意味を持つと確信しています。 従業員の課題は? 今後、従業員の問題を把握する際には、表面的な課題だけでなく、潜在的なニーズにも目を向けるようにしたいと感じています。皆さんは潜在的なニーズを探るために、どのような調査や取り組みを行っていますか?私の現場では外部との連携が少なく、視点が一方に偏りがちであることもあるため、他の事例やアイデアを参考にしていきたいと思っています。

クリティカルシンキング入門

実務に活かす!切り口探求の記録

授業の成果は見えてる? ライブ授業では、知識がまだ十分に定着していないと実感しました。初めの週の振り返りを通してその点を再認識するとともに、ある事例のワークでは切り口を見つけるのに非常に時間がかかりました。初めて取り組む内容だったため、ビジネスの現場において同じケースはほぼ存在しないという考えに至ったのは、良い学びだったと感じています。 分解手法の実践は? 分解の手法については、日々の業務や気になるニュースに対して実践を重ね、より定着を狙っていくつもりです。また、今回の事例は身近な体験であったこともあり、理解の助けになりました。しかし、施策のまとめにあたっては、情報の整理や抽象化する力の不足を痛感し、今後の課題として捉えています。 業務での応用はどう? 業務へのあてはめでは、まず月次実績の振り返りに分解の手法を活用しようと考えています。会議やミーティングでは、目的やゴールを再確認し、論点を明確にすることで、各参加者の立場を意識しながら進められるよう努めます。授業での学びを活かし、どのイシューに対するアクションプランなのかを意識して取り組みたいと思います。 学びの定着を実感? 学びを定着させるため、振り返りと実践を習慣化する行動計画も立てています。まず、記憶が断片的になっている点や整理しきれていない事項について、初めの週からの学びを再実施し、ノートをまとめ直します。さらに、日々の意識向上のためにスケジューラーのリマインダー設定も見直します。 実践の成果は見える? 実践面では、日々の業績確認の習慣として、売上の全体だけでなくカテゴリー別やブランド別に分解して確認する方法を導入し、月次実績にも応用していきます。会議の際は、日時が決定次第予定に反映し、目的やゴール、論点などをメモ欄に記載して意識を高めるとともに、ロジックツリーを用いて思考の整理や分析力の向上にも努めます。さらに、発信する内容および依頼された内容も、最初の目的とそのプロセスを常に意識しながら取り組む所存です。

アカウンティング入門

実例で感じる事業計画の力

コンセプトは守れてる? 事業計画を立てる際は、しっかりとしたコンセプトの下で、資金をどこに投入するかを見極めることが重要です。借入は利息を含めた返済が求められるため、借入を避けるだけにこだわってコンセプトがぶれると、顧客の期待とのギャップが生じ、事業全体の価値が下がるリスクがあります。コア・バリューを守ることが、事業計画の成功に不可欠です。 利益配分はどう? 具体例として、売上が500万円、原価率が30%、固定費(人件費や家賃)が150万円の場合、営業利益は200万円となります。この利益を以下のように資金分配することが考えられます。まず、借入返済に50万円を充て、金利負担の軽減と財務健全性の向上を図ります。次に、ブランド価値の向上や将来の収益性アップを目指して70万円を再投資に回します。売上の変動に備え、30万円を内部留保し、あとはオーナー報酬・配当として50万円を還元します。 他の資金調達は? 全体的に、事業計画における明確なコンセプトと具体的な資金分配例がよく示されています。ただし、借入以外の資金調達方法についても検討することで、さらに理解を深めることができるでしょう。 資金と顧客はどう? また、資金繰りと顧客価値のバランスや、借入以外の資金調達の選択肢にも目を向けることが今後の課題といえます。事業計画を実行に移す際は、具体的なリスク管理プランにも注力すると良いでしょう。 資料を見直すべき? さらに、業務資料の見直しにおいては、顧客視点での分かりやすさが求められます。例えば、収益性(利益率や資金の回り方)を図表で示し、健全な経営が可能であることを説明する方法が効果的です。見直し案として、3期比較による損益構造の可視化、利益率のトレンド分析、資金の流れをタイムライン図で示すといった工夫が考えられます。また、資金分配シナリオの比較(保守型、成長型、高リスク型)や投資回収シミュレーションについても、表やグラフを用いて視覚的に示すことで、リスクと収益性のバランスがより明確になるでしょう。

クリティカルシンキング入門

現場のリアリティ!構造思考体験

計画の進め方は? ファストフードチェーンの事例を改めて振り返ることで、事業計画作りの際に初年度の改善案と3年目の改善案がどこまで計画されていたのか、また客数や客単価をベースとしたテーマに対して、実際の打ち手がどのように動いたのかに興味を持ちました。どのようなスライドをもとに、議論が重ねられ最終的にゴーサインが出たのか、実際の現場がよりリアルに感じられました。 講座で何を体験? 講座内では、売上から課題、そして対策へと段階的に構造分解を行い、その流れを疑似体験することができました。一方で、現職において同様にスムーズに進められる自信はなく、ここ数年の事業計画に向けた施策案の議論の苦しさを改めて感じています。今回学んだことを、自身の業務にしっかり生かしていきたいと思います。 データ活用はどう? 私は事業会社でデータを扱う職種に携わっているため、構造分解や課題に対する具体事例から得られる学びは非常に大きいと感じています。そのため、複数人で議論を重ねながら、個々の問いを明確にして改善案を考えていくプロセスを、今後の業務に積極的に取り入れていきたいと考えています。 問いの整理は? 具体的には、まず自分の問いを明確に書き出し、その問いに対するレビューを受けること。そして、その問いを持った背景や自分の立ち位置を改めて整理することが大切だと感じました。 全体の再構築は? 普段、頭に浮かんだ思考をそのまま書き連ねてしまいがちですが、一度全体を構造分解してから、構成を見直し、伝えたいキーメッセージを抽出し直す必要性を強く感じています。今後は、思考のプロセスを意識的に可視化し、確実に身につけられるように取り組んでいきたいです。 思考の見える化は? 思考のプロセスが見える化されることで、同僚や上司への相談もしやすくなり、助言を得やすくなると考えています。まずは、思考の「吐き出し」の部分を丁寧に進め、着実にプロセスを積み上げていきたいと思います。

データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

データ・アナリティクス入門

目的と仮説で切り拓く分析の道

目的と仮説の意義は? 分析のプロセスを学ぶ上で大切だと感じたのは、まず目的と仮説の設定の重要性です。初めにしっかりと目的や仮説を設定しておくことで、分析中に迷ったときもその軸に立ち返り、方向性を調整することができます。一方、分析を進める中で既に立てた目的や仮説が現状に合わないことが分かれば、柔軟に振り返って調整・修正することも必要だと実感しました。 伝え方の極意は? また、分析結果を伝える相手を具体的に想定することが重要であると学びました。相手の立場や背景を考えずに分析を行うと、数字の羅列に終始してしまい、メッセージ性が希薄になる恐れがあります。目的設定と結論を伝える相手の明確化が、データ収集や加工、発見のプロセス全体を論理的に整理する鍵となると理解しました。 予想外の結論は? 一方で、講義の中でビッグデータの扱いに際し、予想外の結論が導かれる場合があるという点に、不安も感じました。どのような分析でも、蓋然性の高い結果かどうかの検証や、批判的に結果を捉える視点は欠かせません。こうしたリスクを回避するためにも、分析は一人で完結させるのではなく、周囲とのコミュニケーションを大切にしていきたいと考えています。 依頼背景を考える? 私の業務は予算管理で、主に予実比較を担当しています。これまでは、他部署からの漠然とした依頼(例えば「売上の減少」や「費用の増加」)に対し、データが示す傾向をもとにすぐに分析を行うことが多かったのですが、今回学んだ目的と仮説の設定の重要性を踏まえ、依頼の背景をしっかりと把握する必要性を感じました。 積極分析の進め方は? 今後は、例えば売上減少の原因調査において、単に結果だけを追うのではなく、依頼の背景や意図を明確にし、適切な仮説を検証するプロセスを重視していきます。また、一般的な依頼に対しては、既に認識されている問題に取り組むのではなく、未発見の課題や潜在的な問題を先に見つけ出すような、より積極的な分析を目指していきたいと思います。

データ・アナリティクス入門

生徒集客の裏側を数字で解明!

問題の背景は何? ミュージックスタジオの課題では、3W1Hのプロセスを通じて、何が足枷になっているのか、またどのような取り組みが利益に結びつくのかを多角的に分析することができました。さまざまな背景を考慮する中で、問題点が浮かび上がり、どの対策を最優先すべきかを判断する難しさを実感しました。 生徒数増加の課題は? 「生徒数を増やすこと」が売上向上に寄与すると漠然と感じていたものの、原因や具体的な問題点を掘り下げると、考慮すべき要因が多岐にわたることが明らかになりました。一人でその優先度や重要性を選別するのは、非常にハードルが高い作業だと感じました。 対応策は有効か? また、抽出した問題・課題に対する対応策を考える際、今回のイベント開催のように、必ずしも提案が有効に働くとは限らないことを体感しました。そのため、背景にある数値データの分析も併せて検討する必要性を改めて意識するに至りました。 MECEはどう活かす? 「もれなく・ダブりなく」という言葉は以前から耳にしていましたが、今回初めてMECEという考え方に触れました。データクレンジングの際にも一定の意識はあったものの、「もれなくダブりなくもほどほどに感度のよい切り口をたくさん持っておく」という点に大きな感銘を受けました。 現状と理想のギャップは? 取り組むべき問題に対して、「あるべき姿」と現状とのギャップを埋める方法には、正しい状態に戻す対応と、ありたい姿に到達するための対応の2パターンがあることにも気づきました。業務改善の提案にあたっては、現状が悪いという視点だけでなく、現状の良い部分をさらに伸ばしていく視点も取り入れていきたいと感じました。 集客対策はどう検証? 最後に、ミュージックスタジオの事例では、計画通りに生徒を集めることができなかったことが利益に結びつかなかった要因として挙げられていました。これからは、具体的にどのような対策を講じることで生徒を集められるのか、さらに深掘りして考えていきたいと思います。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。
AIコーチング導線バナー

「売上 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right