リーダーシップ・キャリアビジョン入門

みんなの気づきと挑戦

知識の本質は? 今まで学んできた知識を、実際のシチュエーションに落とし込むことで理解が一層深まりました。特に、リーダーシップのあり方やどのようにリーダーシップを発揮するかといった点、また振り返りを一連の流れとして捉える重要性を再認識することができました。関わる相手のことや環境を把握する意義を改めて実感しました。 挑戦への準備は? この知見は、社内で新たな製品への挑戦や環境変化が起こった際に、活動の相談や指示に活かせると考えています。具体的には、状況の変化と協力を依頼する相手の対応範囲を正確に把握することが重要です。その上で、互いに共通の目標を確認できるよう、十分な話し合いの場を設けたいと思います。また、期限を設定しながら、定期的に活動を振り返ることで、長期的な目標達成につなげていきたいと考えています。 全体をどう見る? 一方で、全体を網羅して考えることの難しさも感じました。皆さんが今回の学習でどのポイントに重きを置かれたのか、絶対に外せない部分や、逆に省略しても構わないと判断された部分について、ぜひ教えていただきたいです。

データ・アナリティクス入門

オンライン手続き改善のデータ分析方法

データの見せ方は? 分析の基本は比較であり、どのデータをどのように加工するとわかりやすいかを考えながら進めることが重要です。データにはさまざまな種類があり、それぞれに応じた加工やグラフの見せ方があります。データ分析を始めるにあたっては、「目的」の確認や「仮説」の設定とその検証が欠かせません。 オンライン離脱はなぜ? 私たちのチームでは、お客様に対して紙の手続きではなく、ウェブサイトでのオンライン手続きを推奨しています。しかし、オンライン手続きを行っているお客様がどの段階で離脱しているのか、また、紙を取り寄せるお客様の属性や動機がどのようなものかを理解し、分析する必要があります。 改善点の見極めは? 具体的には、オンラインで離脱しているページやそのユーザーの属性、さらに紙手続きを行っている方々の属性や動機に関するデータを収集し、オンライン手続き率を向上させるためのボトルネックを特定することが目指すべきゴールです。仮説を立てながら慎重にデータを分析し、検証するプロセスを通じて、この課題に取り組んでいきたいと思っています。

データ・アナリティクス入門

比較で見える!分析力の向上への道

正確な分析を行うには? 分析においては、まず比較が重要です。そのため、目的を明確にし、適切な比較対象や基準を設定することで、正確な分析が可能になります。データはただ加工すれば良いというものではなく、それぞれのデータの種類に応じた適切な加工方法や見せ方を考える必要があります。分析を始める前には、目的と仮説を確認することが重要です。 ゴールの明確化が成功の鍵? プロジェクトの進捗管理では、各マイルストーンやゴールを明確にし、進捗を把握するために必要な情報を整理しなければなりません。また、各タスクの進捗状況を可視化するためには、適切なデータ加工が求められます。これにより、課題をより効率的に把握できます。 早期検出につなげるには? プロジェクトの進捗状況を確認するためには、分析に必要なタスクや情報を特定し、各タスクの進捗を定期的に把握することが大切です。さらに、各タスクの進捗が他のタスクにどのように影響するかを知るために、適切なデータの収集と加工を行う必要があります。これにより、プロジェクトの課題を早期に検出したいと考えています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

データ・アナリティクス入門

数値分析で見える改善のカギ

売上低下の原因は? 売上低下の理由を分析する際、問題箇所の特定、売上構造の分解、そして仮説設定と検証方法をリアルタイムで実践しました。特に、売上単価については平均値だけでなく中央値も用いることで、新たな切り口から問題点を把握できることを再確認しました。また、グラフの見せ方が伝える力を持つことについても改めて学び、理解を深めるきっかけとなりました。 予算未達の理由は? 同様に、予算が未達成となっている要因を特定するため、予算構成項目を分解し、前年や前月との比較を通じて落ち込みが生じている点や、伸ばすことが可能な点を明らかにしました。さらに、予算未達成が「予算設定自体の高さ」なのか「実績の低下」に起因しているのかを明確にすることも試みました。 社内データの解析は? 最後に、社内データを活用して予算の各項目ごとに集計を行い、予算比、前年比、前月比などの比較を通じて問題箇所の把握と予算の位置づけを行いました。問題箇所が明らかになった後は、ギャップを3Cの視点から分析し、具体的な仮説を立てた上で検証を進めました。

データ・アナリティクス入門

仮説から実践へ!データ分析の力

なぜ目的と仮説? データ分析を行う目的を明確にし、仮説を立てたうえで必要なデータを集める流れの重要性を改めて実感しました。分析作業に入る前にしっかりとした思考を持つこと、そして分析中はどのようなデータをどのように加工すれば分かりやすいか、また相手に伝わるかを常に意識することが大切だと感じています。さらに、生存バイアスや比較の公平さ(Apple to Appleでの分析)が保たれているかを、その都度確認することも忘れないようにしたいと思います。 どう見積もり比較? 最近は外部ベンダー選定の作業を経験し、見積もりを出してもらうための一連の流れが中心でした。そこで「出てきた見積もりをどのように比較すれば、今後の外部委託時に円滑な運用ができるのか」という観点から、今回学んだデータ分析の基礎的な考え方が早速役立つと感じました。 目的設定はどう? 今週の学習では特に疑問に思った点はなかったものの、今後のグループワークを通じ、目的と仮説をどのように設定しているのかについて、他の受講生の意見も伺ってみたいと思います。

クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

クリティカルシンキング入門

振り返りから学ぶ分析力の磨き方

比率とロジックツリーの活用方法 ある事象の分析に際して、比率を用いて深く調査でき、その後、ロジックツリーを活用してさらに詳細に研究することができました。特に重要だと感じたのは、表を作成することで、多角的な視点から情報を確認できる点です。この学びを生かし、今後も正しい方向性を考え、さらなる学びを続けたいと思います。 相続関連業務の需要とは? 新たな業務提携企画にこの知見を活用していく予定です。相続関連業務、例えば相続対策や事業承継の分野では、外部環境の分析や需要の増加が求められるようになっています。また、遺言に対する顧客の抵抗も減少傾向にあります。ある程度のマニュアルを作成し、それを分かりやすくまとめることが目標です。 新業務企画の進捗はどこまで? 新業務企画の大枠を設定し、ロジックツリーを描きながら不足部分を補完する試行錯誤を繰り返しています。今週中に新しい業務企画の合意書を完成させたいと思います。また、複数の表を作成し分析を行い、MECE(もれなく、ダブりなく)の原則を心がけて日々取り組んでいきます。

データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

アカウンティング入門

ターゲットで未来を拓く

ターゲットはどう選ぶ? ターゲットを明確に設定し、その層に合わせたサービスを提供することが成功の鍵だと感じました。ターゲット層を絞らずに展開すると、どこか中途半端なサービスになり、結果としてどの層にも響かない可能性が高いと思います。 ブランド戦略の秘密は? また、老若男女問わず幅広い顧客を持つある有名ブランドの戦略に改めて驚かされました。誰に対しても「価値」を感じてもらえるブランドづくりの秘訣を知りたいと考えています。 具体的活用はどう? この考え方は、以下の3点において具体的に活用できると感じています。 ① 自社の成長戦略を検討する際、まずターゲットを明確に定め、その上で商品やサービスの方向性を確認するために活用したい。 ② 現在力を入れているターゲットがどこであるのかを示し、もし取りこぼしている層がある場合は、その理由を明確に考え直す必要があると考えます。 ③ 商談が立ち止まった企業については、業種やニーズを再調査し、どの部分にズレがあったのかを分析して今後に活かしたいと考えています。

データ・アナリティクス入門

3C×4Pで描く未来予想図

3C分析の魅力は? 仮説を考えるためのフレームワークについて学ぶ中で、まず3Cの分析が印象に残りました。事業を取り巻く環境を整理するために、顧客(市場)、競合、自社という観点から現状を捉えることが重要であると感じました。これにより、市場の拡大可能性や自社サービスの強み、顧客のニーズの充足度が明確になります。 4P戦略の効果は? 次に、4Pのフレームワークも非常に有益でした。製品やサービスの質、適正な価格設定、提供場所、販売促進の各要素が、顧客に対する訴求力を高める鍵となることを再確認しました。これらの要素をバランスよく整えることで、より効果的な経営戦略が実現できると実感しました。 仮説の意味は? さらに、仮説を持つことで、単なる問題解決に留まらず、未来への問題意識や事業への関心を持ち続けることができるという点も大きな収穫です。結論においても、現状の運用体制の変化に対してどのようなアプローチが必要か、将来的な成長の可能性について仮説を立て、それを日々の業務で検証していく姿勢が重要だと考えています。

「確認 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right