クリティカルシンキング入門

データ活用で気づく、新たな成長のヒント

なぜ問いを立てるのか? 考える前に問いを立て、何を考えるべきかを明確にすることが、大きな気づきとなりました。 データ考察で何が見える? 課題に直面した際、データを基に考察すると、必ず浮き彫りになる点があります。浮かび上がった課題を鵜呑みにせず、他の可能性も探ることの重要性を学びました。 達成者の傾向はどう分析する? 日々の日商報告を確認し、達成者の傾向と自分への適用を考察します。業界的な前回の傾向や課題に対して、どのような対策が可能かを考えるのが重要です。常にデータを収集し、顧客に一目で分かるように可視化します。また、月ごとの求職者の動きなども考慮します。 営業活動をどう振り返る? 毎週の振り返りでは、自身の営業活動を定量的な観点から振り返り、課題の提示と次週の動きを共有します。また、顧客提案時には「人を採用する」以外のニーズをさらに深掘りし、できるだけ定量的に提案していくことを心掛けています。

データ・アナリティクス入門

数字が織りなす学びの物語

なぜ分析が進化する? ライブ配信を通じて、分析プロセスへの理解が深まりました。これにより、単に分析するのではなく、常に目的を念頭に置きながら、What-Where-Why-Howの視点でストーリーを組み立てる意識が高まりました。 データはどう伝える? また、グラフ作成時には実数と割合の両面からデータをビジュアライズすることで、情報のインパクトを分かりやすく伝える工夫が重要だと感じています。企画提案においても、企画の根拠や効果を示す際、数値だけでなく視覚的な表現を取り入れることで、読み手にしっかりと訴求できると考えています。 必要情報はどう整理? さらに、必要な情報は徹底的に収集し、自分だけで対応が難しい場合は、関係者にデータ提供を依頼するなどの手順を踏みます。データ受領後は、代表値やばらつき、外れ値などを実数と割合でビジュアライズし、効果を視覚的に分かりやすく確認することが求められています。

マーケティング入門

顧客価値を見極めるブランド戦略奮闘記

顧客価値をどう見極める? 誰に売るかを考える際、顧客にとっての価値を見出すことの重要性を再認識しました。顧客がその価値を本当に認めるかどうかを判断するのは難しいため、主観に頼らず、客観的なデータを基にした判断が重要だと実感しました。 ブランディングで活用するデータは? 現在、私はグループ会社のフランチャイズ店のブランディングに取り組んでいます。ここでは自身の経験に基づく主観的な考えだけでなく、現場でのヒアリングやアンケートなど、客観的データを用いて、ターゲットとしているフランチャイズ店のオーナーやエンドユーザーに価値を提供する施策を検討しています。 ステークホルダーへの価値提供をどう確認する? また、施策を展開するにあたり、自社だけでなく、フランチャイズ店やエンドユーザーなど、すべてのステークホルダーに対して確かな価値を提供できているかを確認するため、時折立ち止まって考えることが重要だと感じています。

クリティカルシンキング入門

見やすさと中身を追求した資料作り術

表現の工夫で印象はどう変わる? 表現の工夫によって、相手に与える印象は大きく変わることを学びました。まずは基本を理解し、様々なグラフのタイプが持つ理由を踏まえた上で応用するかどうかを判断することが重要です。デザインに意識を向けすぎると中身のないデータ資料になってしまうため、本質を理解し、資料をまとめた上で批判的思考と他者目線を意識して取り組みます。 資料作成のポイントとは? これを元に、フォントや色合い、グラフなどが見やすくまとめられた資料を作成することを心がけます。過度に凝るのではなく、必要な内容に集中し、感覚的にわかりやすく、好印象を与える資料作成のヒントを得ることができました。 GPTを活用すべき理由 今後はGPTなどを活用し、グラフやフォントの適切さを確認しながら、より分かりやすい資料を作成していきます。読む相手が辛くならないように配慮し、他者目線を考慮した文章や資料を作成するよう努めます。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

データ・アナリティクス入門

実践で磨く仮説力の秘密

実務分析の感想は? 今回の演習では、多くのデータや豊富な情報を基に、実務に即した分析を体験できました。仮説を立てる重要性を実感し、検証の目的を明確にすることの大切さを再確認しました。一方で、考えやすい仮説もあれば、内容によっては仮説の設定に苦慮する面もありました。今後は経験を積み、自然に仮説を立てられるようになることを目指したいと思います。 比較で何が見える? また、最初の講義で学んだ「分析は比較である」という考え方を再認識しました。検証項目をしっかりと揃えることが、正確な判断に繋がると感じました。自分の業務では自らデータを取得する機会が少ないため、実際に活かせるシーンは限られるかもしれませんが、常に比較項目を揃える意識を持って仕事に取り組みたいと考えています。今回の内容は情報量が多く、フレームワークの理解が十分とは言えなかったため、書籍の読解や講義の再視聴などで定着を図り、理解を深めたいと思います。

クリティカルシンキング入門

グラフで見える成長の軌跡

数値グラフは何を示す? 課題の解決策を検討するにあたり、まずは数値データを取り出しグラフ化することで、特徴や傾向を明確にする手法に取り組みました。このプロセスは、どんな場面でも活用できる有効な方法であり、何が問題なのかを整理し、具体的な分析に結びつける役割を果たすと感じています。 数字加工って何が違う? また、仕事においても、ただ発生事象の数字を眺めるのではなく、グラフ化や数字の変換を行うことで、より理解しやすい形に変えることの重要性を再確認しました。これまで、過去の実績に頼って漠然と解決策を導いていた部分があったため、即座に構造化して本質を捉えることが、具体的な根拠に基づいた回答につながると実感しました。 手書きメモは有効? 今後は、日常業務で発生する事象についても、手書きの簡単なメモを用いて構造を整理し、同僚との会話を通じて自分の理解と重要ポイントが合致しているかを確認していこうと思います。

データ・アナリティクス入門

データ分析で見つける!問題解決への道

データ分析はどう始める? 分析は、比較から始まります。問題の定義やデータ分析の目的を明確にし、データの切り口や分析方法、データの効果的な見せ方、さらには仮説を立てる際に有効なビジネスフレームワークを学びました。 手続きの問題はどう捉える? 手続きのデジタル化率を向上させるためのプロモーション施策を考えることを目指し、どこに問題があるのか、どのように解決するのかを段階的に考えていきます。特に、どの手続きでデジタル化の進行が遅れているのかを把握し、その手続きを行った人のデータを深掘りします。 分析で何が分かる? 具体的なステップとしては、最初に手続きが紙ベースかデジタルかを確認し、次に属性データや過去にデジタル手続きを利用した履歴で分類します。それらのデータを用いて、なぜその手続きが利用されたのか、またはなぜ利用されなかったのかを分析することで、より深い理解や示唆を得ることができるでしょう。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

データ・アナリティクス入門

目的と仮説で磨く分析の力

分析ってどう理解? 分析とは、ものごとを分け、比べることだと改めて理解しました。具体的かつ明確に整理することで、より良い意思決定に役立てる手法であるという基本的な定義を再確認できたと感じています。分析を進める上では、目的設定と仮説設定がいかに重要かという点が特に印象に残りました。 目的設定は何が必要? まずは、分析の目的を明確にして、どの意思決定に結びつけたいのかを整理することが大切だと考えています。その上で、目的に合わせた仮説を立て、膨大なデータの中から役立つ情報を見極める方法を実践していきたいと思います。 振り返りの進め方は? また、自身の業務を振り返り、データを活用して改善したい点を整理し、どのようなデータを収集しているのかを把握することから取り組みたいと考えています。一つのテーマに絞り、目的設定、仮説設定、そして分析の順で自分なりに実践を進めることで、より良い結果を得たいと思います。

データ・アナリティクス入門

データのバイアスに立ち向かう新視点

生存者バイアスのリスクとは? 「生存者バイアス」は、分析を主とする仕事に携わる人でも陥りやすい問題であると実感しました。データの扱い方だけでなく、分析対象の選び方についてもバイアスにとらわれず、ニュートラルに進めることが、自分の課題だと気付くことができました。 目的を明確にする重要性 BPOとして業務に携わっていると、データの使用目的が特に重要である場面が増えると感じています。以前の「マーケティング」という大義のもとでは、目的から外れることは少なかったのですが、目的を明確にすることが、業務全体でますます重要となりそうです。 データの純粋な観察方法 今回の講義を通して、データを純粋に観察する習慣を付け、仮説を立てることを重視し、比較対象が正しいかの確認を怠らないようにしたいと考えています。業務でバイアスの怖さを感じているため、事前の確認によって、バイアスの回避を心掛けたいと思います。

データ・アナリティクス入門

データが照らす改善の道

ABテストの意義は? ABテストを通じて、単にAかBを選ぶのではなく、前提条件を統一した上で比較・検証することが次の施策につながると感じました。問題のある箇所については、プロセスごとに分解し整理することが大切だと改めて認識しました。 数字で何が分かる? また、具体的な数字を取得することで、試行した打ち手がどのような効果をもたらすかを明確にしたいと思います。サイトに限らず、アンケートなどを活用して課題を抽出し、想定される項目のほかに自由記述も設けることで、定量データとして予想外の回答が得られるかどうかを確認できる工夫が必要です。 FAQ改善の狙いは? 業務面では、FAQサイトの問題箇所を特定し、改善案に基づいた比較テストを実施することが重要です。過去のPV数などのデータを把握し、変更後の数値の変化を確認することで、PDCAサイクルを効果的に回していきたいと考えています。

「確認 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right