データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

アカウンティング入門

数字の裏に潜む経営のヒント

B/SやP/Sの基本を確認? P/Sの当期純利益がB/S上の純資産に該当することや、B/Sを見る際にはまず5つのパーツの大きさを比較することを学びました。その上で、何に資金が多く使われているのか、必要な資金が増加していないか、そして倒産のリスクがないかを確認する視点が非常に役立ちました。 減価償却はどう違う? また、減価償却の方法として定率法と定額法の違いについても理解を深めることができました。計算方法や適用する状況について具体的に把握できたため、今後の実務にも役立つと感じました。 新規取引はどのように? さらに、新規取引の検討においては、取引先のB/Sを自分なりにイメージし、構造を捉えることが重要であるという点に気づかされました。学んだ内容を踏まえ、本質的な強みや潜在的なリスクを見極める視点を持つことが、信頼できる取引関係の構築につながると実感しています。 対話で方向性は? 最後に、取引先の担当者と会社の強みや、目指すべき方向性について対話を重ねることが、相互理解を深め、より良い関係を築く上で非常に有効だと学びました。

クリティカルシンキング入門

問いが拓く成長の現場

イシューの問いはどう? イシューを特定するための問いの立て方を学びました。問いは具体的な行動に落とし込むことが重要であり、イシューは一貫して追い続ける必要があります。そのため、定期的に立ち返って方針にブレがないかを確認することが大切です。 問いの背景はどう? この手法は、社内のサポート対応にも活用できると感じています。問い合わせ内容をそのまま受け取るのではなく、なぜ問い合わせがあったのかを問い立て、本当に解決すべき課題を掘り下げることで、イシューを明確にし、結果としてサービスレベルの向上に繋がると考えています。 会議で問い直す? また、問い合わせに対して問いを設けた上で、社員とのコミュニケーションを通じて情報収集し、イシューを明確にすることが必要です。メンバーごとに対応内容に違いが出ないようチーム内で共有し、長期間にわたり課題解決が進まない場合は、会議でイシューに立ち返り、問い自体が正しかったのかを含めて検討していくことが求められます。こうした流れを定例会議に組み込むことで、より効果的な対応が実現できると考えています。

データ・アナリティクス入門

データ分析が拓く新たな可能性

比較の重要性は何か? 分析の本質は比較にあります。感情に左右されず、数字をそのまま受け入れて冷静に考えることで、解決策が見つかるかもしれません。主観的な感想に基づく判断は間違いやすいので注意が必要です。 適切な比較対象の選び方 適切な比較対象を選ぶことも重要です。問題に一方的に集中するのではなく、異なる要因からも分析を進めることで、全体的な状況を把握することが可能です。同じ条件でAが存在するかどうかを確認するのが理想ですが、現実にはこれまでの数字と多様な理由が絡んできます。この単科講座を通じて、可能な限りの状況を研究し、関連する要因を特定して、効果的な解決策を考えるスキルを身につけたいと思います。 データ分析をどう活用する? これまでの現場対応では即応的に問題を解決してきたかもしれませんが、今後はデータ分析を活用し、理論的なアプローチを用いることで、接遇技術をより効率的に改善できると考えます。その場で「できない」と言い訳をするのではなく、選択肢を提示することで、より良い結果を導き出せるのではないでしょうか。

クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

データ・アナリティクス入門

課題を解く力が未来を創る

問題意識は十分か? データを分析する前に、まず問題や課題を明確に意識することが大切です。単に「how」から作業を進めるのではなく、「What」「Where」「why」「how」といったステップを順に踏むことで、全体像をしっかり把握できます。また、実務においてはMECEの考え方を意識しながら進めることが求められます。 課題は整理できる? これまで、漠然とした課題に対してなんとなく手をつけがちでしたが、今後はロジックツリーを活用し、全体感と各課題のポイントを明確にしていきたいと考えています。MECEを意識して問題を分解し、整理することで、具体的なアプローチが見えてくるはずです。 現状との差を把握する? また、課題を正しく把握するためには、あるべき姿と現状の違いを整理することが重要です。単に分析を始めるのではなく、ロジックツリーやMECEを用いることで、課題点を細かく分解しながら確認していくことが必要です。出したいアウトプットを意識するだけでなく、丁寧に要素を分解し、進めていく姿勢を大切にしたいと感じました。

データ・アナリティクス入門

実践で拓く改善と挑戦

A/Bテストの意義は? A/Bテストは、対象をA群とB群に分け、同時期に検証を実施する比較手法です。工程が少なく導入しやすいというメリットがありますが、比較するポイントを明確にし、他の要素を同一条件に保つ点に留意する必要があります。 時期の違いは問題? テスト対象が別の時期に実施されたものや、大きく異なる要素が含まれている場合、正しい比較が行えなくなるため、十分に注意しなければなりません。 品質会議の狙いは? また、品質管理や作業難易度に関するミーティングでは、参加者にアンケートを実施し、普段の作業の正確さや改善への意識について意見を集めることで、今後の品質管理ミーティングや改善提案に役立てることができると考えています。 学びをどう活かす? 今後は、A/Bテストを活用できるテーマとターゲットを決定し、本日の学びを実践していく予定です。仮説を立てることを前提とし、提案内容が部門方針に合致しているかを意識するとともに、ターゲットが大きく異なる複数の要素で構成されていないことを確認して進めていきます。

データ・アナリティクス入門

仮説で開く成長の扉

仮説の軸どうする? 仮説を考える際は、一定の軸を持って行うと思考が整理され効率的です。例えば、4P(価格・場所・商品・プロモーション)や3C(顧客・競合・自社)などのフレームワークを活用することで、仮説が一点に偏らず、全体を俯瞰して検討できます。 効果検証のポイントは? また、デジタルマーケティングの効果検証においては、訴求メッセージが狙った対象に適切に伝わっているか、費用対効果が十分か、媒体ごとの違いがあるかなどを意識して仮説を立てることが重要です。ターゲット設定が正確かどうか、その情報が購買に結びついているかという点も、明確な仮説設計を通じて再確認する必要があります。 購買行動の見極めは? さらに、購買データに基づき、どのイベントが発生したときに購買に結びつくのかを意識しながらデータを整理することで、仮説シナリオを構築します。その上で、ターゲットを明確に定め、手元にある各種レポートや分析ツールをもとに、メッセージが本来届くべき相手にしっかり伝わっているかを検証する方法が求められます。

データ・アナリティクス入門

振り返りが照らす学びの道

目的と手段の違いは? 分析に取り組む際、まず「要素の分類化」や「比較」という視点を確認しました。分析はあくまで手段であり、目的ではないという点が印象に残ります。これにより、仮説を元に進める中で、途中から「差分探し」が目的化してしまわないよう注意する必要性を感じました。 レポート設定の意義は? また、定期的な分析レポートを実施する際には、改めてその目的を明確に設定することが大切だと再認識しました。業務の中で、分析自体が目的とならず、真に必要な意味を見出すために、常に差分に敏感になり、その差分がどのような意味を持つのかを意識する習慣を身につけることが求められます。 PDCAはどう実践する? さらに、すべての分析には仮説を立て、得られた結果に基づいて施策のPDCAサイクルを実行することが基本です。報告時には、ただ結果を示すだけでなく、分析の目的や背景を相手に伝える工夫が必要です。分析を終えた後は、やりっぱなしにせず、必ず振り返りの時間を設け、次のアクションにつなげることが今後の改善に寄与するでしょう。

アカウンティング入門

数字に隠れたビジネスの真実

利益分類はどう理解? この講座では、売上高から利益までの流れや、売上総利益、営業利益、経常利益、純利益といった利益の分類について学びました。さらに、ビジネスの価値提供によってP/Lの構造がどのように変わるのかを理解できたことが印象的でした。細部にとらわれず、全体の構造としてざっくりと把握する重要性を改めて実感しました。 損益分析はどのように? また、事業計画の策定や部門ごとのP/L提示が求められる場面で、各種のビジネスの違いが具体的な損益の違いとして現れるという点が、とても実践的だと感じました。これにより、部門の経年変化や今後の価値提供に対するシナリオを論じる際に、アカウンティングの視点から冷静に分析できる力が備わりました。 未来計画をどう考える? 今後は、各部門のP/Lを改めて確認・分析するとともに、異なる事例や他部門、さらには他社のP/Lを比較して多角的に学んでいきたいと考えています。こうした取り組みを通じて、自分の担当するビジネスの価値について、より深い洞察を得られると感じています。

アカウンティング入門

カフェから学ぶ経営戦略の秘密

カフェ事例から何が学べる? 身近なカフェを例に、ビジネスの本質を学ぶことができました。コンセプト(思い)に基づいた提供価値と、それに見合う対価の関係が数字にどのように反映されるかが、事例を通じて明快に理解できました。特に、高付加価値を追求する一方で、薄利多売の場合にPLのどの項目に差異が生じるか、その理由について具体的なイメージが湧きました。また、利益を出すための施策はコンセプトに基づいたものでなければ、ビジネス全体にリスクを生じさせるという点も印象的でした。 PL比較で何が見える? さらに、自社のPLを他社と比較する際、理念や戦略の違いが如何に数字に反映されるかを考察することが重要だと感じました。どの部分で利益が出ているかや、その大小を確認することで、自社のビジネスがコンセプトに沿って運営されているか、または改善すべき点がどこにあるかを掴むことができました。今後は、数値の推移や変化と施策との結びつきをさらに意識し、3か月先までの売上や費用の見通しといった具体的な活動にも取り組んでいきたいと思います。

アカウンティング入門

経営戦略に役立つB/S分析入門

流動資産と固定資産の比率は? 全体像を捉えるために、まず流動負債、固定負債、純資産、流動資産、固定資産について確認します。特に資産がどのように使われているのか、流動資産と固定資産の割合が提供価値に合致しているかを確認することが重要です。また、倒産のリスクを避けるために、流動資産と流動負債の関係や固定資産と純資産の関係についても注意深く観察します。 経営戦略に役立てるには? 自社の提供価値を念頭に置きながら、B/Sを確認し、資金調達と資金運用のバランスを分析することで、経営状況や課題、将来への取り組みを多面的に検討したいと考えています。また、競合他社についても同様に分析し、競合の動向を把握することで、経営戦略に役立てたいです。 他業種のB/Sも重視すべき? 自社および競合他社のB/Sを経年的に整理し、違いや今後の動向を整理することが大切です。さらに、他業種の会社のB/Sも整理し、事前に立てた自分のイメージと合致するかを確認して、業種ごとの違いも含めたB/Sの理解を深めていきたいと考えています。

「確認 × 違い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right