データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

クリティカルシンキング入門

伝える技術が劇的に向上した学びの旅

伝える目的は何? 「伝える」という点において、目的の重要性を再確認しました。前回と同様に、「誰に対して、どのようなことを求めているのか」を明確にすることが、伝達行動の鍵であると感じました。今週の学習では、視覚化によってどのように伝わりやすくなるかについて、多くの気づきを得ることができました。資料を作成する際、「これくらいわかるだろう」と思い込みがちですが、読み手の負担を軽減することが重要であると意識します。 資料作成の工夫は? アンケートや施策効果検証においてグラフや資料の作成を行う機会が頻繁にあります。最近ではCM効果検証の報告資料をまとめましたが、グラフの作成方法や強調すべきポイント、そして見やすさの追求において不足している部分が多いと感じました。資料を見返すと、多くの学びがあり、次回の資料作成に活かしたいと思います。 説明方法はどう? 週明けには、施策の打合せで概要を説明する機会があります。その際に、誰に伝えるのか、どのポイントが重要なのか、そして伝えたいことは何かを整理したいと思います。これを視覚化(文章に起こすこと、比較表やフロー図を作成すること)を通じて、初見でも理解しやすい説明をできるよう準備を進めたいと考えています。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

データ・アナリティクス入門

実績分析で気づく新たな視点

グラフを使い分けるには? データの多さや少なさを確認したいときは縦棒グラフ、比較を行いたいときは横棒グラフ、割合を示したい場合は円グラフを使うのが効果的です。用途に応じてこれらのグラフを使い分けることが重要です。目的を明確にした上で分析を行い、最終的に作成する資料が社内外のステークホルダーに感謝されるようなものになると理想的です。 どのグラフが最適ですか? たとえば、担当先ごとの売上や営業所間のメンバーの実績達成率を比較する際には横棒グラフが適しており、担当先のマーケットシェアを示したいときには円グラフが便利です。会議での効果的なアウトプットを意識して、適切なグラフを作成していくことが求められます。また、縦軸と横軸に何を選ぶかによってアウトプットの見方が変わることがあるので、様々な試行を行いたいと思います。 実績分析に時間を割くべき? 毎朝、実績を見る際に、自分だけでなく営業所メンバーの実績もExcelで分析しています。従来のやり方に加えて、グラフ作成にも挑戦しています。縦軸と横軸を従来とは異なる項目にしてみるなど、工夫を凝らしています。この作業にはかなりの時間を要するため、毎日1時間は数字分析の時間を確保しています。

データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

データ・アナリティクス入門

分析比較で成果を最大化する技術

分析の重要性とステップは? 分析は、比較から始まります。まずは目的に沿って、正確な比較対象を絞り込むことが第一ステップです。条件が異なる比較は、結果に意味を持たせられず、有用ではない結論に至ってしまいます。そのため、それぞれの分析の目的を見失わず、仮説に基づいて対象を絞り込み、比較していくことが重要です。 具体的な分析方法は? 具体的な分析としては、対象顧客の業界、販売結果、各営業メンバーの実績評価、営業拠点の比較、マーケット状況の分析、海外も含めた需要分析とそれに応じたサプライチェーンの構築、さらに競合他社との強み・弱みの比較分析が挙げられます。 効果的な分析サイクルとは? 分析を進めるためには、以下のサイクルを回すことが必要です。まず、比較に用いるデータを収集し、次に目的に合わせた比較指標を決定します。そして、その指標に基づいてデータを整理し、比較を行います。最後に、分析に基づいて結論を導きます。 このサイクルを繰り返しながら、改善策や対策を検討し、実行します。その後、再度分析して変化を確認し、次のアクションを決定していくことが重要です。この一連のプロセスを繰り返すことで、効果的な分析と持続的な改善が可能になります。

アカウンティング入門

決算書で読み解く経営の物語

決算書から何を分析? 今回の学習を通して、決算書から企業の資金調達方法、コスト構造、利益の拡大メカニズム、そして固定費の大きさなど、経営戦略や特徴が多角的に読み取れることを改めて実感しました。単なる数字の羅列ではなく、その背後にあるビジネスモデルや企業の価値観を想像しながら分析する力が非常に重要であると感じました。決算書は、企業経営の実態を「見える化」する基礎資料であり、企業理解の土台だと再認識しました。 企業情報をどう活かす? 今後は、新聞や業界紙などの情報源に積極的に接し、さまざまな企業の経営情報に触れる機会を増やしていきたいと考えています。さらに、興味を持った企業の決算書を自ら確認し、分析することで、競合他社の財務状況や市場全体の動向を客観的に把握し、企業の立ち位置や戦略策定に役立てることを目指します。 財務分析のコツは? また、企業の決算書を取り寄せ、財務数値や構造を比較・分析するプロセスから学びを深め、得られた結果をもとに上司や経営層に提案できるような準備を整えたいと思います。継続して分析に取り組むため、毎月新たに一社以上の企業資料を読み込み、実務に結びつける努力を重ねながら、経営視点を確実に養っていく所存です。

アカウンティング入門

営業利益vs売上総利益の深い学び

売上総利益と営業利益の違いは? 売上総利益と営業利益の違いについて理解が深まりました。これまで、自分の仕事でサービスごとの損益計算を行っていた際、それを営業利益と呼んでいました。しかし、実際には販管費などを差し引く前の数字であるため、それは売上総利益であることが分かりました。この経験を通じて、一般的に使われている言葉でも、会社によっては内訳が異なることもあり得るため、各数字にどの項目が含まれているかをしっかり確認する必要があると感じました。 自分の事業全体をどう比較する? 今後は、自分の事業全体における売上高、売上原価、そして販管費がどの程度かかっているのかを、昨年度と比較してみたいと思っています。これを実施することで、それぞれの用語に対する理解が深まり、自社の事業全体が儲かっているのか、どのような状態にあるのかを把握する助けになると思います。 サービスごとのPL比較で何を学ぶ? また、扱っている各サービスのPLを並べて比較し、サービスごとの違いも見ていきたいと思います。具体的には、売上原価が多くかかるサービスと、売上原価が低く抑えつつ売上高を高く維持できるサービスなど、それぞれの特性を理解しようと考えています。

マーケティング入門

商品が売れる鍵は「魅せ方」だった!

顧客心理の理解は重要か? 今週の実践演習を通じて、顧客のニーズが満たされていても、その商品の魅力が伝わらなければ売れないことを学びました。また、新商品を購入する際、顧客が躊躇する心理が働くこともマーケティングにおいて重要な点であり、新たな気づきになりました。このような心理が働く可能性を理解した上で商品の魅力を伝えなければ、優れた商品でも「売れる」ことには繋がりません。 魅せ方をどう工夫する? イノベーションの普及条件のフレームワークを活用し、顧客に伝わる商品の魅せ方を追求する必要があると感じました。まず、自社商品のコンセプトと魅せ方を改めて確認し、その上で包材の側面から新たな価値を付加できないかどうか考えます。また、自分が思っていた商品の魅力と実際の魅せ方が一致しているのかも吟味します。 競合との違いを見極めるには? さらに、売れている商品がどのような魅せ方をしているのか、他社の競合商品と比べてどのように差があるのかを、お店の商品を見ながら比較してみます。新商品が出たときに、それを「買いたいと思うか、買いたくないと思うか、なぜそう思ったのか」について、自分自身の考えを深堀して、その商品魅せ方を検証していきます。

アカウンティング入門

経年分析で見つける自社の課題

資産と負債をどう分析する? 資産と負債のそれぞれを、流動・固定という観点から見て、また純資産とのバランスが取れているかを確認したいと思います。経年でこのバランスに変化がないかを確認することで、全体の状況を把握し、その後に個々の数字を分析していきたいです。また、業界ごとのバランスの違いも確認し、それが提供価値と一致しているかを見極めることも重要です。 経年分析で何を見通せる? 自社のバランスシートを経年で分析し、現在の状況をしっかりと把握したいと思います。特に、資金の使途を理解することで、自社の経営方針における課題を見つけ出したいです。たとえば、固定資産の比率を減らすには投資計画を見直すことなど、具体的な数字に基づいて考えたいです。また、競合他社との比較を通じて浮かび上がる課題も考慮し、分析の切り口を広げたいと思います。 競合比較で見える課題とは? さらに、自社と競合他社のバランスシートを経年で比較し、傾向に違いがないかを確認したいです。我々の業界では、固定資産の割合が大きいことが特徴であるため、中期の投資計画の必要性やその経営方針との一致について論理的に説明できるよう、理解を深めたいと考えています。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

「確認 × 比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right