データ・アナリティクス入門

データ分析で見る成長のカギ

比較の重要性って何? 分析の本質は比較にあり、効果を測定するためには、「Aがある場合」と「Aがない場合」を比較することが重要です。ただ「Aがある場合」だけを見ても、その効果を正確に測定することはできません。そのため、分析の目的に沿った適切な比較対象を選定し、分析したい要素以外の条件を整えることが必要です。この考え方を「Apple to Apple」と呼びます。 施策効果の見極め方は? 販促施策の効果を分析する際には、イベントやDM、SNSなどさまざまな方法がありますが、以前はアクションがあった顧客の反響のみを分析していました。今後は施策を行っていない期間の販売実績とも比較し、何をもって目標達成とするかを明確にして企画を立案します。データ分析を行う際には、まず分析の目的やゴールを明らかにし、どの情報を比較すればよいかを検討してから分析を進めなければなりません。 条件整理のポイントは? 「Apple to Apple」の原則に従い、分析対象以外の条件が揃っているかを確認することが重要です。施策を進める際には、データを蓄積するためにさまざまな条件を整えられるように企画します。また、エリア別の顧客属性分析を行う際に、どの比較対象が適切であるかについては、部署に持ち帰って相談し、より明確にすることが推奨されます。

戦略思考入門

フレームワークで広がる戦略の視点

戦略構築で見落としは? 戦略を構築する際に、フレームワークを活用することで見落としを減らせると感じています。代表的なフレームワークとして、3C分析、SWOT分析、バリューチェーン分析などがあります。分析が終わった後は、「整合」を重視して戦略を立てることが重要です。全社的に考えることが求められ、一部門のみで整合がとれているだけでは必ずしも良い戦略とは言えないことがあります。また、短期的に成果を上げても、中期的には見直しが必要な場合もあるため、短期的施策として実施期間を設定したり、見直しの指標を設けたりすることが大切です。 会社状況をどう整理? これまで、自分で会社全体の状況を整理する機会がなかったため、まずは3CとSWOT分析から始めてみたいと考えています。その際、各部門ごとに発表される戦略や目標に関する資料を活用し、それを元に自分なりに1つの資料としてまとめて分析します。この全体像の中から、自分のチームとして何ができるかを考える予定です。 チーム貢献、どう考える? 会社全体および各部門の戦略を分析し、自分のチームがどのように貢献できるかを考えています。再来週には社員全体で今期の中間報告会が予定されているため、それまでに分析を完了し、チームとして事業に貢献できる部分を明確にしたいと考えています。

データ・アナリティクス入門

直感だけじゃ辿り着けない未来

直感は信頼できる? 普段の仕事やデータを扱う際、経験や直感に頼った仮説が基本であったことを改めて実感しました。データ分析そのものではなく、むしろデータ収集の段階で不足している点が原因だったと考えています。この経験が、部門費などの予算策定時における変化の捉え方を再見直すきっかけとなりました。 予算根拠は正確か? 部門費の策定根拠や、今後の設備投資に関する理由付けについては、未来を見据えた考察が十分でなかったと感じています。何か異変があった場合の修理費用が予算に計上されず、過去の事例や頻度を確認することで、適正な管理につながる一手段としたいと思います。 委託実態はどうだ? 請負会社に業務を委託している現状では、作業の安定性はもちろん、雇用期間が短期に終わる点にも課題を感じています。労働内容に加え、職場環境も影響していると考え、既に委託から10年が経過している案件も多いことから、改めて状況把握から始めたいと思います。 記録整備は必要? 具体的には、請負会社で働く方々の実務経験年数や年齢層などの基本情報の収集を行い、当社を離れる理由なども可能な限り情報として集める予定です。また、設備投資に関しては、過去の作業記録のデータベース化が未実施であるため、そこから着手する方針です。

データ・アナリティクス入門

プロの視点で分析スキルを業務に活かす方法

フレームワークの重要性を実感 前期の戦略入門でも感じたことだが、まずはフレームワークや型にはめて物事を考えることの重要性を改めて実感した。分析においてはWhat, Where, Why, Howのステップが基本であり、日々の業務においてもこの点を意識して進める必要があると強く感じた。今週の演習を通じて、これまでの経験や感覚に頼っていたことを再認識したので、今後の学習期間中はこの点を意識して取り組んでいきたい。 大幅に下回る結果を改善するには? 現在の業務において、前年以上の売り上げを上げている施設や地域がある一方、前年を大幅に下回る施設や地域も存在する。このような場合において、問題や原因を特定し、その要因を探り、どのように改善に繋げていけるかを追求するために、今週の学びを早速活かしていきたいと考えている。 MECEを使った分析の取り組み 今週の学びの一つであるフレームワークを自分のものにするために、現状の業務に適用してみることにした。週次で分析を進めている特定の地域がなぜ前年を下回る結果となっているのかを題材に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識しながらロジックツリーを活用して分析していきたい。

クリティカルシンキング入門

営業課題を解決!イシュー特定の重要性を実感

イシューを特定する重要性とは? イシューを特定することの重要性を、学習を通じて実感することができた。と同時に、適切なイシューの捉え方の難しさも感じるようになった。本質を捉える「問い」にたどり着くまでの時間や準備も重要だが、自分一人で解決するという意識が強かった。しかし、「問いを残す」「問いを共有する」など、メンバーと一緒に考え、悩むことでも良いと感じるようになった。また、イシューを特定することで論理的な枠組みや適切な根拠を導きだすことも学んだ。 進捗遅れを解消するには? 所属する部署で進捗が遅れている営業課題を解決するためのイシューを特定し、幹部と共に論議した。その結果、やるべき活動や期間、到達目標、活動の見える化の手法などを整理した。幹部と共同で考えることでイシューを共有し、一体感をもって取り組むことができると感じた。 課題と解決策をどう共有する? 具体的には、現状結果から課題とあるべき姿とのギャップを分析し、そのギャップを解消する課題を幹部と共有した。部署としてのイシューを特定し、相互に論議して解決策と優先順位を決定した。さらに、定期的なミーティングを計画し、イシューから離れたり方向性が分散しないように継続して取り組むことが重要だと学んだ。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

仮説から見える学びの真実

仮説に盲点はあった? 仮説を立てる際、ついつい決め打ちになっていたように感じます。また、仮説同士の網羅性が不十分であったため、上位層のレビューで指摘を受けたことに気づくことができました。特に、手間を惜しまないことの重要性が印象に残っています。 仮説の種類を見分けた? 「仮説」という表現はよく使っていただけたものの、「結論の仮説」と「問題解決の仮説」という種類があることに気づくことができ、良い気付きとなりました。 戦略で仮説活かせた? 今期の戦略策定にあたっては、結論の仮説と問題解決の仮説を活用し、目標に対するゴールを設定する方針です。また、現在課題となっているサービスの継続率向上のために、問題解決の仮説を用いてアプローチを検討しています。 データで仮説検証? そのため、昨年度の契約状況に関するデータを収集し、業種や支援内容など様々な角度から比較して仮説を立てる計画です。 戦略計画は整った? 戦略の策定は1ヵ月以内に完了させる必要があるため、まず事業部の戦略目標や方向性、自身の売上目標を確認します。その上で、契約に関するデータ(契約のきっかけ、契約内容、単価、期間、業種)を収集し、比較・分析を行う予定です。

データ・アナリティクス入門

1月の謎に挑む!仮説力の全貌

仮説の違いは何? 仮説を立てる際に活用できるフレームワークについて、改めて学ぶ機会となりました。そこで、結論としての仮説と、問題解決のための仮説という2つの考え方があることを理解しました。また、問題解決プロセスにおいては「where(どこで)」「why(なぜ)」「how(どのように)」の視点を意識することが重要だと認識しました。 利用状況変化はなぜ? 具体的な事例として、12月から1月にかけてサービスの利用状況が低下した際の対応を検討しました。結論の仮説としては、長期休暇中にサービスから離脱が起きたという点を重視しました。同時に、特に正月期間にユーザーの離脱、すなわちチャーンが発生した可能性に着目し、問題解決に向けた仮説を立てました。さらに、年末年始の背景を踏まえ、プッシュ通知などでログインを促す導線を作ることが有効ではないかという仮説も検討しました。 データで何が分かる? 加えて、12月から1月のサービス利用状況について、デイリーベースでデータ分析を実施しました。離脱ユーザーの属性やこれまでの傾向を可視化するとともに、プッシュ通知などのお知らせがログインのフックとして機能するのかをテストする工程を経ました。

データ・アナリティクス入門

分解で掴む業務改善のヒント

どこにボトルネック? 問題の原因を明らかにするには、業務プロセスを分解して、どの段階にボトルネックがあるかを特定することが重要だと学びました。実務ではインターネットを活用した営業を行っていないため、A/Bテストは実施しませんが、同一期間・同一条件下で検証項目を比較するという手法は、他の場面でも十分に応用できると感じました。 セグメントはどう見る? 自部門で伸び悩んでいる事業についても、まずは問題の原因究明に取り組み、適切な対応策を検討する必要があると考えています。そのため、部門内で営業セグメントごとに実績を分析し、各セグメントの問題点を洗い出した上で、具体的な対策を立案・実施し、再度分析するというサイクルを構築したいと思います。 対策はどう実施? 具体的には、3月末時点でのセグメント別業績データをもとに、前年度と当年度の成長率を比較します。低迷しているセグメントについては、問題の原因を徹底的に分析し、翌年度に向けた対策をまとめ実行します。その後は、各四半期ごとに進捗を検証し、現状を把握するとともに、必要に応じて追加の対策を講じるという業務改善の仕組みを根付かせることが目標です。

アカウンティング入門

業種で読み解くB/Sの秘密

B/Sの表現はどう違う? B/S上で、業種ごとに異なる事業モデルがどのように表現されるかが非常に興味深かったです。たとえば、資産面から固定費が大きくなる事業とそうでない事業があり、経営コンセプトによって必要な資産の状態が変わるため、それに合わせた負債の設定も変わることが理解できました。 B/Sの特徴はどう見る? また、B/Sに関しては以下の点に注目して学びを深めたいと考えました。まず、業種ごとにB/Sの特徴がどのように異なるのか、大きな傾向を感じ取ること。次に、同一業種内でも企業ごとの資産、負債、純資産の構成の違いに焦点を当てること。そして、35年ほどの長期にわたるB/Sの変化の流れを把握することです。短期間、たとえば3年程度では変化が見えにくいという仮説も立てています。 財務数値はどう分析? これらは、財務関係の書籍で顕著な事例が紹介されているため、その内容を確認することで業種ごと、企業ごとの違いを概略的に理解していきたいと考えています。ある程度理解を深めたうえで、実際の財務数値を整理し比較することで、より確実な分析に繋げていきたいです。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

「分析 × 期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right