データ・アナリティクス入門

データ分析で気づく改善の一歩

データ分析ってなぜ? 全体を通してデータを分析する重要性を改めて実感しました。今まであまり意識していなかったMECEの考え方―漏れや不足がない状態―について、比較の段階があることやそれぞれの段階で分かる情報の違い、そして明確な発見があるという点が印象に残りました。 着地見込みの工夫は? また、着地見込みを作成する際、単価を中央値で表示するなど細かい部分にも応用できる点を体験でき、シミュレーションに積極的に取り入れていきたいと感じました。今後は、シミュレーション結果や予算、実績とのGAP分析にもこれらの方法を活用し、より精度の高い検討を行いたいと思います。 GAP検証で何が起こる? さらに、シミュレーション実績との比較をもとにGAPの仮説検証を実施し、次の期には軌道修正が図れるよう動いていく予定です。まずは表やグラフを作成して比較し、そこから差異分析を行って仮説を立て、改善に結びつけていきたいと考えています。

データ・アナリティクス入門

MECEで広がる分析の新境地

MECEの理解を深めるには? MECEの考え方は非常にわかりやすく、理解することができました。これまで要因解析に活用していたロジックツリーを、別の目的の分析にも使えると知り、非常に驚きました。また、売上を単価と数量に分けて分析する方法も、実践しやすく感じました。 数字の分解で深掘り分析 要因分析では、数字を分解して深掘りすることが広く応用できると考えています。MECEをフレームワークとして理解したので、実際に分析する際には層別が漏れなく、重複がないかを図示して見える化し、確認していきます。 精度向上を目指す次のステップ 定性的な要因分析も含めて、まずはロジックツリーを実際に描いてみることから始めます。その上で、MECEの観点で層別が適切にできているかを図を用いて確認し、分析の精度を向上させたいです。また、これらの図を使って関係者と共有し、レビューすることで、より精度アップを目指します。

データ・アナリティクス入門

変数分解で広がる学びの可能性

MECE活用の秘訣は? 問題解決を行う際は、もれなくダブりなく切り分けた状態でMECEを意識し、ロジックツリーを活用してアイデアを出すことが大切です。分解方法としては、層別分解と変数分解があり、様々な切り口で意味ある分類を行うことが求められます。最終的に一つの案に絞る際は、ロジックツリーで複数の案を出した後、評価基準に基づいて選定する手法が有効だと感じました。今回、これまで慣れていた層別分解に加え、初めて変数分解での案出しを実践してみることにしました。 品質改善はどう考える? 製造業での品質不良分析や、売上向上を目的とした修理データの分析にも、MECEやロジックツリーを用いた要因分析が役立ちます。たとえば、層別分解では製品別や地域別で分類し、変数分解では客単価×客数や数量×単価といった切り口を採用できます。これにより、不良の原因を網羅的に洗い出し、的確な対策を立案することが可能となります。

データ・アナリティクス入門

平均だけじゃ見えない数値の物語

平均と標準偏差は何が違う? 普段の業務で平均値はよく目にするものの、標準偏差にはあまり注目していませんでした。しかし、データの比較が分析の基本であると意識する中で、単に単純平均だけで比較するのではなく、その比較自体に意味があるかどうかを検討し、適切な指標を選ぶべきだと考えるようになりました。 背景にある要因を探る? また、私の業界では他エリアでの優れた事例を自地域に取り入れることが一般的です。その際、来客数や平均単価といった数値に注目する場面が多いですが、単なる数値の比較に留まらず、背景にある要因について仮説を立て、深く考察する姿勢が重要だと感じています。

「分析 × 単価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right