戦略思考入門

立ち止まる勇気で未来を拓く

立ち止まる意味は? 「がむしゃらにやるだけではなく、一度立ち止まることも必要。毎回すべてを実行していてはスピードが落ちるため、だんだんと勘どころが分かってくる」という言葉を胸に、講座全体を通じて自身の課題への取り組み方を見直す機会となりました。目の前の課題の解決にのみ意識が向き、その背景や真の原因を探ることがおろそかになってしまう点、また考え過ぎるあまり実際の行動に移るのが遅くなってアウトプットに時間がかかる癖があることに気づきました。今後は、課題に直面した際にこの言葉を思い出し、より本質的な解決に取り組むよう心がけたいと思います。 環境をどう見る? また、ビジネスは環境要因も大きく影響するため、全てを自分の責任と考えず、少し時間を置いて状況を客観的に見ることが大切だと感じました。自分に可能なこととそうでないことを見極め、過度に自責で考えない姿勢を忘れずにいたいと思います。 本質をどう捉える? さらに、「定量的、正確性、精緻性にこだわると仮説思考が広がらない」という教えから、枝葉の部分に気を取られ、本質である幹の部分を見失わないようにする必要性を痛感しました。そこで、常に「ここで本当に考えたいことは何か」を自分や参加者に問いかけ、目的を見失わない議論を意識していきたいと考えています。 余白の価値は? また、思考の習慣を変えるために「1%でも余白を作ること」が重要であると学びました。平日の日々の中で少しずつ学習効果を実感できたため、意識的に余白時間を取り入れ、自己研鑽を継続していきたいと思います。 新市場の戦略は? 既存事業とは異なる市場への参入を検討する中で、今回学んだ内容は大いに活用できると実感しています。プロジェクトの方向性を検討する際には、まずありたい姿を描き、次にどのように競合との差別化を図るかを考えます。そして、実行フェーズでは物事を整理し、思いついた施策すべてを実施するのではなく、本質を捉えた施策を選び抜き、戦略的に取捨選択する必要があると感じています。特に、プロジェクトの根幹に係る方針検討では、潜在顧客の表面的な言葉だけに頼ることなく、その奥にある真のニーズを把握するとともに、検討した施策がプロジェクトの目的実現に沿っているかどうかを吟味するため、戦略思考を積極的に活用するつもりです。 計画は順調ですか? 直近の報告イベントに向けて、まずは以下のスケジュールでアウトプットを進めていきます。まず1週間以内に、プロジェクトの3C分析、5Forces分析、PEST分析、SWOT分析を実施し、自社が置かれている立ち位置を明確にします。次に1ヶ月以内に、先行する競合に対してどう差別化を図るかを顧客視点と自社のケイパビリティからアイディア出しし、その妥当性をVRIO分析で検証の上、適切な施策を選択します。そして2ヶ月以内に、上位者への報告の場でこれらの方針をプロジェクトの基本方針として承認していただくことを目標としています。短いサイクルで実施することで、通用する施策と不足している点を明らかにし、次の学びに繋げていきたいと考えています。

リーダーシップ・キャリアビジョン入門

キャリアアンカーで自分再発見

リーダーシップとはどうする? リーダーシップを発揮するには、単にどのように他者に影響を与えるかを学ぶだけでなく、自分がどのような価値観をもって仕事に取り組んでいるかを深く理解することが重要です。自己理解を進めることで、部下や後輩がキャリアに悩んだ際に、具体的な理論をもとにアドバイスができ、また相手と一緒にキャリアについて考えることで、より効果的なリーダーシップが発揮されると感じています。 自己理解をどう深める? 具体的に学んだキャリアアンカーやキャリアサバイバル理論について、印象的だった点はこれらの理論を用いても、自分自身のことはなかなか分からないということです。そのため、自己理解を深めるためには、身の回りの人に意見を求めることが大切だと実感しました。同時に、キャリアレビューのように節目ごとに自分の価値観や仕事への向き合い方を棚卸しし、見直すことも必要だと考えています。 キャリアの実践法は? この考えの実践として、キャリアアンカーを活かすための5つのステップ(実際は4つですが、忘れにくくするためにあえて1つ多くしています)を整理しました。まず第一に、現段階での自分自身のキャリアアンカーを確認します。次に、現職がキャリアアンカーに合っているかを職務分析で判断し、第三に、キャリアアンカーに見合った将来計画を策定します。その後、周囲の人と意見交換を行い、最後に、変えられる部分を見極めた上で積極的に行動計画を立てるという流れです。ただ、その理想像に沿って進めようとすると、アンカーに合わない仕事をしているという制約が付きまとい、場合によっては結果として人生全体に悪影響を及ぼす危険性も感じられます。 将来計画の壁は? このような現状を踏まえ、キャリアアンカーに基づく将来計画を立てる際に直面する制約や、その制約を乗り越えるための具体策についても改めて考えてみたいと思います。 部下理解の工夫は? 現在、節目ごとに自分と向き合う時間を十分に確保できていないという課題がありますが、働く部下や後輩の価値観をより深く理解し、リーダーシップを発揮するためには、今後こうした機会を増やす必要性を感じています。また、部下や後輩がキャリアについて相談してくれる際に、的確なアドバイスができるよう、自己理解とその共有を進めたいと考えています。 自己見直しの時期は? 具体的な取り組みとして、まずは毎年3月に自分と向き合う時期を定期的に設けることにしています。ナノ単科受講後から3月末までの期間には、自分の価値観や仕事への向き合い方を見直し、キャリアアンカーやキャリアサバイバルを実際に試してみる予定です。さらに、同期間内にキャリアアンカーに基づくインタビューや、周囲からの期待を取り入れることで、客観的な「見えている自分」に出会う努力をしています。 意見共有はどう? そして、4月中には自己理解の成果を踏まえ、プロジェクトのメンバーなどにもさりげなく自分の考えを共有し、他者にも同様の取り組みを勧めることで、相互の成長を図ることを目指しています。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

データ・アナリティクス入門

データ駆動!仮説から実践へ

A/Bテストはなぜ? A/Bテストの考え方が特に印象に残りました。異なる2つの施策を比較して、どちらが効果的かを見極める手法を学ぶことで、広告やプロモーションの改善につなげるアプローチを理解しました。実際、SNSでのプロモーションやデザインの検証など、具体的なマーケティング活動にどう応用できるかを実感しました。 仮説はどう考える? また、「こうではないか?」という仮説を立て、それを確かめるために必要なデータを収集して検証・改善するプロセスを通し、結果一喜一憂せずに仮説→検証→改善というサイクルの重要性を体験しました。日常の課題解決にも応用できる実践的な学びとなりました。 分析の視点は何? さらに、データ分析においては「どこで起きているのか(Where)」「なぜ起きているのか(Why)」「どのように起きているのか(How)」という3つの視点で自分の身の回りのデータを分析する練習が非常に効果的であると感じました。これにより、実際の現場に近い形で分析力を向上させることができました。 知識はどう活かす? そして、講師の「使われない知識はどんどん捨てられていく」という言葉が強く心に残りました。知識は使ってこそ意味があるという考え方から、学んだことを実務や日常に活かす姿勢の大切さを再認識し、今後も積極的にアウトプットしていきたいと感じました。 講座の展開はどう? それに加えて、講師養成講座の受講者促進に対しては、具体的な展開案も印象的でした。まず、仮説に基づき、ターゲット層に合わせたプロモーション戦略を設計することが提案されました。例として、若年層の反応を狙い、「講師」というワードが持つ堅苦しさを和らげ、“キャリアアップ”や“副業”といった切り口から魅力を伝える文言を用意する案が挙げられています。 WEB広告の効果は? さらに、Web広告やSNS投稿を使ったA/Bテストによって、異なるバナー画像や訴求文、ターゲット年齢に対する反応を計測し、効果的な組み合わせを選定する方法も紹介されています。各媒体における反応を、「どこで(Where)」「どんな表現が刺さったか(Why)」「受講に至る導線の状況(How)」という視点で分析する点も具体的でした。 受講者の声は? また、受講者アンケートを活用して、学んだ内容が現場で役立っているかどうかを評価し、講座内容や演習方法の改善につなげるという姿勢は、実践的な学びをより一層深めるものと感じました。 今後の行動は? 最後に、今後の具体的な行動計画として、Phase 1からPhase 5までの段階的な取り組みが示されました。まずはターゲットの再設定と仮説の立案、次にテストコンテンツの作成とA/Bテストの実施、さらにデータ分析と受講者アンケートを通じた改善、講座内容のブラッシュアップ、そして成功事例をもとに次回募集に向けた本格展開へと進める構想です。これらの計画を通じ、受講促進に向けた施策を体系的に実行していく意欲が感じられました。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

戦略思考入門

航空業界の革新を目指すコンタクトセンター戦略!

事業戦略における重要ポイントは? 航空業界のコンタクトセンター運営における事業戦略・企画において意識すべきポイントは以下の5つです。 まず、3C分析を活用します。市場・顧客(カスタマー)の観点からは、顧客ニーズや市場動向を詳細に把握し、サービスに反映させることが重要です。競合(コンペティター)の観点からは、競合他社の運営方法やサービス内容を調査し、自社の強みと弱みを比較して、成功事例や失敗事例を参考にします。自社(カンパニー)の観点からは、内部リソース(人材、技術、プロセス)を評価し、強みを活かした戦略を立案します。 SWOT分析をどう活かす? 次に、SWOT分析の活用です。強み(Strengths)としては、最新技術の導入やブランド力を活かしたサービス提供が挙げられます。一方、弱み(Weaknesses)としては、リソース不足やプロセスの非効率性の改善が必要です。機会(Opportunities)には、AIやビッグデータ解析などの新技術を活用した新しい市場や顧客層へのアプローチがあります。脅威(Threats)には、競合の進出や規制の変化に対応するための準備が含まれます。 顧客対応プロセスの最適化は? 3つ目のポイントはバリューチェーン分析の活用です。顧客対応プロセスの効率化、スタッフのトレーニング充実、技術サポートの強化など、各機能を分析し、そのコストを詳細に把握することで無駄を削減し、高い付加価値を生む部分にリソースを集中させます。 顧客視点をどう強化する? 4つ目は顧客視点の強化です。顧客満足度の向上のために、顧客のフィードバックを積極的に収集し、サービス改善に活かします。また、顧客データを活用して個々のニーズに応じたパーソナライズドサービスを提供します。 継続的な改善を実現するには? 最後に、継続的な改善です。PDCAサイクル(Plan、Do、Check、Act)を実践し、継続的にサービスを改善します。また、業界のベストプラクティスを取り入れることで、自社の運営に反映します。 これらのポイントを意識し、3C分析、SWOT分析、バリューチェーン分析といったフレームワークを活用し体系的に情報を整理して戦略を立案します。顧客視点を重視し、継続的な改善を行うことで、コンタクトセンターの運営を効果的に進めることができると考えました。 実行に移すためには、まず3C分析を行い、顧客ニーズ、競合他社、自社のリソースを詳細に把握します。次に、SWOT分析を用いて強み、弱み、機会、脅威を明確にし、戦略を立案します。さらに、バリューチェーン分析で各機能の効率化とコスト削減を図り、顧客視点を強化するためにフィードバック収集とパーソナライズドサービスを実施します。最後に、PDCAサイクルを回し、継続的な改善を行い、業界のベストプラクティスを取り入れることで、効果的なコンタクトセンター運営を実現させることができると考えました。

データ・アナリティクス入門

小さな仮説、大きな変革

データ分析の効果は? 今週の学びでは、データ分析を活用することで、感覚的な判断から離れ、客観的な事実に基づいた意思決定が可能になると実感しました。特に、仮説を立てた上でデータを収集・検証するA/Bテストや、アンケートの結果を定量的に処理しグラフや数字で確認する技術は、マーケティングやサービス改善に直結する有効な手段であると理解しています。今後は、業務後のアンケート集計やSNS施策において、小規模な仮説検証を取り入れ、データを活かした改善活動を進める必要性を感じました。数字で成果を語る習慣や改善に向けた意識を日々実践し、継続的な取り組みが未来を変える力になると学んだ一週間でした。 講座受講促進の秘訣は? これまでの学びを自分の仕事にあてはめると、講師養成講座受講促進の例として以下のように整理できます。まず、仮説を立てる段階では、「40代女性は講座に興味を持っているものの、日程や価格が申し込みの障壁になっているのではないか」という仮説を設定します。次に、過去の資料請求や問い合わせ、説明会参加者の属性データ、SNS広告やランディングページ(LP)のクリック数、コンバージョン率といったデジタルデータを収集し、申込者と非申込者の属性やアクセスから申し込みまでの動線の違いをグラフで見える化します。年代別、職業別、流入経路別にヒートマップや棒グラフで傾向を把握した上で、例えばLPに掲載するキャッチコピーや導線を2パターン用意してA/Bテストを実施し、効果の高いパターンを検証します。最後に、データの変化を定期的に追い、仮説の修正や新たな施策の追加を繰り返すことで、改善活動を継続していきます。 問題解決の手順は? また、ライブ授業で紹介された問題解決のステップ「What, Where, Why, How」に基づく行動計画も立てました。まず【What】として、講師養成講座の説明会参加者や資料請求者数に対して、受講申込みへの転換率の低さや、特定の層(例:30〜40代女性、地方在住、育児中)の申し込みが伸び悩んでいる現状を整理します。次に【Where】では、SNS広告からLPクリック、説明会参加、申込みへと至る導線の中で、LPでの離脱、説明会後のフォローアップ不足、そして広告のターゲットと実際のコンテンツの連動性不足といった課題があると考えます。【Why】においては、SNS広告の内容がターゲットのニーズ、例えば「副業」や「子育てとの両立」に十分応えられていないこと、LPの構成の不明瞭さ、説明会の内容と申込みへの動線が断絶していることが原因として挙げられます。最後に【How】として、SNS流入データや属性情報をもとに複数の仮説を抽出し、属性別のクリック率、離脱率、申込率をグラフ化して問題箇所を特定、A/Bテストで各施策の効果を検証し、成果の高いアプローチを標準化して他のターゲットにも応用していく、という一連の具体的な対策を検討しています。

クリティカルシンキング入門

実践で見つける学びのヒント

データ分解のポイントは? ■データや数字を分解するとは、まず一手間かけて実際に手を動かし、異なる要素を取り入れながら分解・分類することです。案ずるより生むがやすしという言葉どおり、実際に試してみることで気づきが得られます。また、MECEの考え方を取り入れて漏れや重複を防ぎ、粒度を統一することも重要です。さらに、統計的手法そのものは使わなくとも、正の相関・負の相関や偏りといった結果が分解の過程で明らかになると考えられます。 視覚化の工夫は何? ■データの可視化では、仕事に視覚的な刺激を与える工夫が求められます。最適なグラフや色使いを意識すれば、直感的に内容が把握しやすくなります。グラフ作成においては、意図を誘導するのではなく、客観的な視点と根拠に基づいて、見やすさを重視した作り方が大切です。 各指標の活用法は? 自社の業務では、生産性や品質、お客様の満足度アンケートなど、数字で示せる指標が多数存在します。日常的に取得されるデータは社内ルールに従い取り出し・分析されていますが、KPIに基づかないデータはまだ十分に活用されていません。たとえば、音声データは今後、AIによる分類が進み、感情や品質の判断などに役立つ可能性があると感じています。 視覚情報活用の秘訣は? ■視覚情報を活かすため、直感的に判断しやすい図形のバリエーションを増やそうと考えました。普段はワンパターンになりがちだったため、見直す必要があると反省しています。同様に、先に述べた通り、グラフは客観的でわかりやすいものを作ることが重要です。 異なる視点の効果は? ■実際に手を動かす段階では、定型的な並べ方だけでなく、あえて異なる視点からグラフを作成してみることが大切です。失敗や試行錯誤の過程が次の発見につながるとともに、同じ行動様式によるバイアスやパターン化を排除する助けになります。たとえ時間効率を重視しすぎず、KPI項目に重点を置いた原因分析や仮説の構築に取り組む一方で、KPI以外のデータからも意外な傾向が見えてくるかもしれません。 比較で見える新発見は? また、数値やグラフの比較や傾向を通じて、何も見えてこなかった場合でも、その経験を次への一歩として前向きに受け止めることが大切です。多くのお手本を参考にしながら、状況に応じて複数のグラフバリエーションを試作し、今まで活用できなかった手法を検証する機会を持つことが求められます。 数字伝達の秘訣は? 最後に、数字による主張を客観的に伝えるためには、自分が立てた仮説や意見を偏らず筋道立てて説明する工夫が不可欠です。どれだけ簡潔な説明ができるかを追求しつつ、数字やグラフからどのように伝えるか、どんな言葉を用いるかを直感と経験で磨いていくことが、最終的な課題解決につながると考えます。振り返りや反復練習を通じて、基本を定着させ、一過性では終わらない実践を続けていきたいと思います。

デザイン思考入門

デザイン思考で拓く未来のチャンス

デザイン思考の本質とは? デザイン思考とは、単なるアイデア発想の手法にとどまらないものです。「共感」「試行」「発散と収束」を繰り返し、創造的でより良い解決策を見つけるための思考プロセスと理解しました。講義だけでなく、他の受講者との意見交換を通じて特に印象に残った学びや気づきを以下に挙げます。 共感が解決の鍵? まず、共感の重要性です。問題解決の出発点は、ユーザーの立場で深く理解することにあります。本当の課題を考えるためには、観察やインタビューを通じ、その場に顕在化していないニーズを探ることが求められます。 スピード感を持つ試作の重要性 次に、プロトタイピングとフィードバックのスピード感が大切です。素早く試作してフィードバックを受け取りながら改善するアプローチは効果的です。完成形を目指すのではなく、デザイン思考の各フェーズを行きつ戻りつしながら試して学ぶことで、より良い解決策が見えてきます。 発散と収束のバランスは? さらに、発散と収束のバランスも重要です。考えられる選択肢を広げる発散と、最適な解決策を絞る収束を交互に繰り返すことで、創造的な解決策を得ることができます。既存の枠にとらわれず、多様な視点を取り入れることが新しいアイデアを生む鍵となります。 デザイン思考の具体的な応用は? デザイン思考は、特に事業開発や組織開発のコンサルティング業務で応用できると考えました。新規事業開発を支援する際には、顧客ニーズを正確に捉え、適切なプロダクトやサービスを設計する必要があります。ユーザーインタビューや観察を通じて潜在ニーズを引き出し、アイデアのプロトタイピングを迅速に行うことで、事業の方向性が明確になります。 また、組織改革・組織開発を支援する際には、多様な視点から課題を分析することが必要です。エンゲージメント向上策を考える時に、現場の意見を集めながらプロトタイピングを進めることで、実効性の高い施策につながるでしょう。 クライアントへの効果的なアプローチ方法は? クライアントとのワークショップ設計やファシリテーションにも役立ちます。問題を整理し、解決策を共創する際に、発散と収束のバランスを意識すると、より効果的な議論ができます。アイデア創出の段階では多様な視点を採り入れ、その後、アイデアを整理して実行可能なアクションに落とし込むことが有効です。 これを踏まえ、以下のような行動を試してみたいと考えます。まず、クライアントの課題を整理する場面では、共感フェーズを意識し、「なぜ?」を繰り返し問い、本質的な課題を探ります。次に、ワークショップやミーティングをデザイン思考に沿って進め、新規事業のアイデア出しでは発散し、その後収束するという流れを意識します。最後に、プロトタイピングを有効に用い、提案前にシステムモデルを通じて思考を構造化し、フィードバックを得るなどして、提案をより洗練させます。

データ・アナリティクス入門

論理的思考力を徹底的に学ぶ: 実践例多数!

問題解決のフレームワーク 講座全体を通じて、特に学びとなったポイントは次の通りです。 まず、問題解決のフレームワーク「What」「Where」「Why」「How」の順番で考えることが重要であることです。これにより、問題解決のプロセスが論理的かつ体系的になります。 データ分析の視点は? 次に、数値データを分析する際に漠然と数字を見るのではなく、定量分析の5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を持つことが大切です。これにより、効率性や再現性が向上し、同じ気付きや示唆をより効果的に得ることができます。 また、平均値を取る際には「標準偏差(データのばらつき度合)」という視点を持つことが必要です。仮に平均値が同じであっても、「ばらつきがある」「ばらつきがない」ではデータの意味合いが変わってくるからです。 Howで成果をどう上げる? 問題解決のフレームワークの最後「How」で解決策を考える際には、選択肢を絞り込むための判断基準を明確にすることが肝要です。これにより、成果を上げる可能性が高まり、仮に成果が上がらなかった場合でも、どの判断基準に問題があったのかを振り返ることで、さらなる改善が可能となります。 グラフ選びの新たな視点 関連動画で学んだポイントもいくつかあります。グラフを作成する手順「仮説や伝えたいメッセージは何か?」「比較対象は何か?」「どのグラフを使うのか?」は新しい学びでした。これまでの私は最初から「どうグラフを作ろうか」と考えていましたが、1と2を先に考えることで、自然とどのグラフを使うべきかが見えてくることに気付いたのです。 さらに、マイナスの項目がある場合にはウォーターフォールが有効であることや、何を比較対象とするかによって適切なグラフが異なることも学びました。例えば、ギャップがある場合は横棒グラフやウォーターフォール、時系列やトレンドがある場合は折れ線グラフや縦棒グラフ、散らばりや構成比率を示したい場合はヒストグラムや円グラフ、相関を示したい場合は散布図がそれぞれ適しています。 学びの実践で何が変わる? これらの学びをいくつかの面で活用したいと考えています。まず、自社サービスの課題の明確化や改善に向けて、営業プロセスの課題を整理し、日々の定例ミーティングでチームメンバーと議論を深める場で、得た知識を実践したいと思います。自分だけでなく、チーム全体に学びを共有することで、議論や分析の質を高め、より有効なアクションに繋げたいです。 また、経営分析(財務諸表の比較分析)においても今回の学びを応用するつもりです。四半期ごとに財務諸表を比較分析し、問題を具体的に特定することで、株主への業況説明の説得力を高めたいと考えています。そのためには関連書籍で知識の増強に努めたり、必要に応じて今回のような講座に参加することも検討しています。

データ・アナリティクス入門

データ分析で変わる未来への第一歩

データ分析の考え方をどう変える? 今週の講義を通じて、データ分析に対する考え方が大きく変わりました。これまでデータ分析というと、「データを集めて傾向を見る」という漠然としたイメージがありましたが、実際には緻密な準備と明確な目的意識が必要であることを学びました。 目的をどう合意する? 特に印象に残ったのは、「分析の目的を組織で合意を得てから始める」という考え方です。データで何を明らかにしたいのか、その結果をどのような行動につなげたいのかを関係者と共有することで、より効果的な分析が可能になります。目指すアウトプットや、その結果によってどのように行動変容を促したいのかを事前に合意できればと考えています。 比較分析がもたらす示唆は? また、データは比較によってその意味が見えてくるという点も重要な学びでした。時系列での変化や異なる属性間の違いを分析することで、より深い示唆が得られます。さらに、分析結果を報告する際には、次のアクションプランを含めて提案することで、組織の意思決定に貢献できることを理解しました。 リスキリング企画の必要性は? 現在担当しているリスキリング企画においても、研修後のアンケートの分析アプローチを見直す必要性を感じています。現状の満足度評価だけでなく、部署別の研修効果の違いや時間経過による行動変容を測定することで、より効果的な研修プログラムが設計できると考えています。 新規事業支援での戦略的活用 新規事業立ち上げ支援においては、ユーザー検証のデータをより戦略的に活用することが可能です。顧客属性による反応の違いやサービス理解度の変化を定量的に把握することで、事業戦略の精緻化が図れるでしょう。経営層への報告においても、データに基づく明確な示唆を提示し、具体的な投資判断の材料を提供できます。 研修アンケート設計の見直し 来週からは、現在実施中のリスキリング研修に関するアンケート設計を見直します。具体的には、研修内容の理解度や実務での活用意向に加え、3ヶ月後の行動変容を測定するための追跡調査の仕組みを構築します。 仮説の明確化と調査設計 新規事業の計画では、ユーザー検証前に仮説を明確化し、チームで合意します。その後、アンケートやインタビューのスクリプトを作成します。例えば、「このサービスは特定の年齢層でニーズが高い」という仮説を立て、それを検証できる調査設計を行います。 経営会議に活用するデータ分析 経営会議では、これまでのユーザー検証データを再分析し、顧客属性別の反応傾向や時系列での変化を可視化します。特に投資判断に直結する指標については、比較分析を通じて説得力のある資料を作成します。 これらの取り組みを通じて、データに基づく意思決定プロセスを組織に定着させ、より効果的な事業展開と人材育成を実現したいと思います。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right