データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

戦略思考入門

顧客を惹きつける差別化の探求

差別化のカギは? 今回の演習を通じて、「差別化」について三つの気づきを得ました。 顧客像ははっきり? まず一つ目は、ターゲット顧客を明確にする重要性です。顧客像を細かくイメージし、それに基づいて価値を提供しなければ、他社のやっていないことを考え出すことができたとしても、顧客に受け入れられるかどうかはわからず、無意味な施策に終わりかねません。 施策の継続は? 次に二つ目は、施策を考える際には顧客に提供する価値だけでなく、その施策が実現可能で継続可能かどうかを重視することです。どれほど優れた施策でも、時間やコストがかかりすぎるか、他社に簡単に模倣されるようであれば効果が持続しないため、取り組むべきではないと感じました。 考える順序は? 最後に三つ目は、物事を順序立てて考えることの重要性です。施策を考えることから始めるのではなく、まずは状況把握を行い、その後に顧客ターゲットの選定、最後に施策の検討へと進むべきだと気づきました。 現状の確認は? これらの気づきを踏まえ、今後は「現在の自分たちの状況は何か」という問いから始め、「ターゲットとなる顧客は誰なのか」「その顧客にどのような価値を提供するか」と考え、具体的なターゲットを定めて、そのために考えられる戦略を多角的に検討していきます。 営業戦略はどう? 今回の学びは、社内の営業戦略への理解を深めるためにも有用だと実感しました。現在、社内のコスト部門に所属しており、営業戦略については会社が用意する資料を読む程度ですが、これを機に自社がどのような差別化戦略を採用しているのか改めて分析し、自分の理解を深めることで、現場での取り組みが会社の営業戦略に合っているか確認していくつもりです。 中期戦略は探る? また、自社の中期経営戦略を見直し、どのような差別化戦略に取り組んでいるかを探ります。具体的には、VRIO分析を行い、自社の強みを感覚と一致するか確認します。その後、自部署が何を提供できるかを考えていきたいと思います。

データ・アナリティクス入門

問題解決を極める!ナノ単科で学ぶステップ

問題へのアプローチは? 問題解決は、解決策を先に考えるのではなく、問題の明確化から始まり、問題箇所の特定、原因の分析、そして解決策の立案というステップを経て進めることが重要です。問題の明確化は、現状と理想とのギャップから始まります。問題箇所の特定や原因分析、解決策の立案は、ロジックツリーなどを活用して可視化し、丁寧に整理することで、順調に進めることができると考えられます。 手順の確認は? 問題解決のプロセスでは、まず問題を明確にし、その後、問題箇所を特定し、原因を分析し、解決策を立案します。この順番に従うことが基本ですが、次のステップに進んでうまくいかなければ、前のステップに戻ることや、ある程度方向性が見えたら解決策を試して原因を再度探るといった柔軟な方法もあります。 現実と理想は? 現状と理想のギャップから問題を明確化する際には、二つの形態があります。一つは、正常な状態から低下している現状を正しい状態に戻すための問題解決です。もう一つは、現状が正常であるにもかかわらず、理想に到達するために取り組むべき問題解決です。 ロジックツリーは? 問題の特定、原因の分析、解決策の立案の各ステップでは、ロジックツリーを活用することで、問題を要素に分け、どこに問題があるか特定します。最初に設定した問題を中心に、要素をツリー状に分けることで、MECE(もれなくダブりなく)の原則に従い、効率的に問題を抽出し、原因を把握し、解決に寄与することができます。 計画と実績は? 業績計画と実績の差異を分析する際には、計画(理想)と実績(現状)の違いを明確にすることが重要です。これまでは問題を明確にした段階で対策を考えていましたが、ロジックツリーを用いて構造化することで、問題箇所の特定や深い原因分析が可能となり、より効果的な解決策を実施できます。10月の業績に関するレビューが11月中旬に予定されているため、この方法を活用して問題箇所を特定し、原因を分析し、効果的な解決策を講じたいと考えています。

アカウンティング入門

実例で感じる事業計画の力

コンセプトは守れてる? 事業計画を立てる際は、しっかりとしたコンセプトの下で、資金をどこに投入するかを見極めることが重要です。借入は利息を含めた返済が求められるため、借入を避けるだけにこだわってコンセプトがぶれると、顧客の期待とのギャップが生じ、事業全体の価値が下がるリスクがあります。コア・バリューを守ることが、事業計画の成功に不可欠です。 利益配分はどう? 具体例として、売上が500万円、原価率が30%、固定費(人件費や家賃)が150万円の場合、営業利益は200万円となります。この利益を以下のように資金分配することが考えられます。まず、借入返済に50万円を充て、金利負担の軽減と財務健全性の向上を図ります。次に、ブランド価値の向上や将来の収益性アップを目指して70万円を再投資に回します。売上の変動に備え、30万円を内部留保し、あとはオーナー報酬・配当として50万円を還元します。 他の資金調達は? 全体的に、事業計画における明確なコンセプトと具体的な資金分配例がよく示されています。ただし、借入以外の資金調達方法についても検討することで、さらに理解を深めることができるでしょう。 資金と顧客はどう? また、資金繰りと顧客価値のバランスや、借入以外の資金調達の選択肢にも目を向けることが今後の課題といえます。事業計画を実行に移す際は、具体的なリスク管理プランにも注力すると良いでしょう。 資料を見直すべき? さらに、業務資料の見直しにおいては、顧客視点での分かりやすさが求められます。例えば、収益性(利益率や資金の回り方)を図表で示し、健全な経営が可能であることを説明する方法が効果的です。見直し案として、3期比較による損益構造の可視化、利益率のトレンド分析、資金の流れをタイムライン図で示すといった工夫が考えられます。また、資金分配シナリオの比較(保守型、成長型、高リスク型)や投資回収シミュレーションについても、表やグラフを用いて視覚的に示すことで、リスクと収益性のバランスがより明確になるでしょう。

クリティカルシンキング入門

小さな数字の分解、大きな気づき

数字分解はどう考える? 数字を分解するという手法について学びました。まず、数値をWhen、Who、Howなどの要素に分ける際、①加工の仕方、②分け方の工夫、③分解の留意点に注意することが大切だという点を実感しました。たとえ分解した数値からすぐに有用な情報が得られなくても、それ自体が分け方に工夫が必要であるという気付きにつながります。 切り口は何が鍵? また、複数の切り口を見出すためには、目的や立場を踏まえて仮説を立てたり、データを表やグラフで表現してみることが効果的であると感じました。たとえば、ある施設の入場者数の減少を分析する際、切り口を4段階に丁寧に分けることで、減少の実態をより正確に把握し、次のアクションにつなげる経験が非常に印象に残っています。 MECEをどう活かす? MECEの考え方も学びました。全体を適切に捉えるためには、①全体集合体を部分に分ける(足し算)、②変数で分ける(掛け算・割り算)、③プロセスで分けるという三つの観点があること、そして問題解決のプロセスとしてWhat、Where、Why、Howの要素があることを再確認しました。重要なのは、まず全体を定義することだと感じました。 なぜなぜ分析は? 業務上の問題や課題解決に取り組む際、これまで自分の経験に基づく思い込みが原因となってしまうことに気づかされました。従来使用していたなぜなぜ分析は主観的な原因追及に陥りがちでしたが、今回学んだプロセスに基づいた分解手法で、より客観的に問題箇所を特定できると実感しています。 業務改善はどうする? 今後は業務において、GW明けから数字を分解する際に、①加工の仕方、②分け方の工夫、③分解の留意点を意識しながら進めていく予定です。実践を重ねる中で、常に複数の切り口で分析できるスキルの向上を目指し、既存の切り口が最適かどうかを検証しながら思考を鍛えていきます。また、MECEの考え方についても、モレがなくダブりがないかを確認しながら、業務に定着させられるよう努めていきたいと感じました。

データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

クリティカルシンキング入門

もう一人の自分を育てる学びの旅

学びはどんな内容? WEEK1の学びを整理してみて、以下のような重要なポイントに気づきました。 批判的思考って何? まず、「もう1人の自分を持つ批判的思考」が重要です。思考には偏りがあり、ついつい自分が考えやすい方に流されがちです。しかし、みんなが同じように考えているとは限らないことを意識すべきです。そのため、主観的ではなく、客観的に考える姿勢が必要です。思いつきで判断するのではなく、説明責任を果たすために3つの「視」(視点、視座、視野)を使って視野を広げることが求められます。 現状分析はどう? ケースワークを通じて学んだこととして、現状を細かく分析し、理想的な姿をしっかりと見据えることが大切だと感じました。「問い」を意識し、今何を課題にするべきかを見極めることを忘れてはいけません。フレームワークを活用することはもちろん重要ですが、それに固執しすぎない柔軟な姿勢も必要です。 他者の意見はどう? グループワークを通じては、客観的に物事を考えるために他者の意見を聞くことが近道であると感じました。相手がその考えに至った理由を聞くことで、今後自分が客観的に考えるためのヒントになります。 営業会議はどう進む? 営業会議においては、数値目標達成に向けて行動を決める際、過去の経験に頼りすぎると、やるべきことが毎回同じになってしまう傾向があると気づきました。このため、課題を特定する際には、まず要因分析を丁寧に行い、1枚の紙に簡潔にまとめて、伝えるべきことを結論から述べ、その後に根拠を伝える姿勢が効果的です。 書類作成ってどう? 提案書や報告書においては、短くまとめることが重要です。提案書はワンペーパーにまとめ、視覚的に認識しやすいよう工夫します。報告書も同様に、ワンペーパーで読み手の立場に立って、文章やグラフを工夫することが望ましいです。 メールは要点ある? 最後に、メール発信時は、指示が長くなりがちなので、簡潔に結論を先に述べ、理由は3点以内にまとめることを心掛けます。

データ・アナリティクス入門

プロセスで発見!学びの秘密

原因はどこにある? 問題の原因を探るためには、まずプロセスを細かく分解し、各段階でどこに問題が潜んでいるかを仮説検証する手法が重要です。複数の選択肢を洗い出し、根拠に基づいて適切な判断を下す点にも着目しています。また、A/Bテストを実施する際は、できるだけ条件を整えた上で比較することが求められます。 効果的な分析法は? 具体的なデータ分析の方法としては、まずステップを踏みながら問題の精度を高めるアプローチと、仮説をもとにデータを収集し、より良い解決策に結び付ける手法が組み合わされています。これにより、最適な解決策の検出が可能となります。 分解とテストの極意は? プロセスを分解する方法とA/Bテストのポイントを組み合わせることで、より高度なデータ分析が実現されます。仮説検証と条件を揃えた比較の両面からアプローチすることで、実際の検証結果に基づいた改善が期待されます。 実例から学ぶには? 実際の事例としては、ポイント会員向け利用促進キャンペーンにおいて、若年層の反応を探るために、若者が関心を持つジャンルの店舗を複数選定し、クリエイティブのA/Bテストを実施する計画が挙げられています。過去のキャンペーンデータを活用し、ポイント付与がどの層の購買に影響しているかを機械学習を用いてアプローチする手法も取り入れられています。 次回でどう活かす? 次回のキャンペーンでは、会員データからターゲットとなる層の購買パターンを複数洗い出し、ロイヤルカスタマー化につながる経路を明らかにすることが目標です。洗い出されたカスタマージャーニーに基づき見込み客にアプローチし、その反応をPDCAサイクルで検証・改善していく計画です。 全体をどう見る? 全体として、プロセスの分解とA/Bテストの方法を的確に押さえたアプローチが示されており、仮説検証を実際のデータに基づいて試すことで理解が一層深まる内容になっています。今回学んだ内容を次のプロジェクトでどのように活かせるか、引き続き考えていきましょう。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

戦略思考入門

視点を広げ、競争を勝ち抜く差別化戦略

差別化の意味は? 差別化の目的は「顧客に選ばれること」であり、競合他社との違いを強調することは単なる手段に過ぎないと理解しました。このため、同業界のみならず他の業界からも幅広い視点で差別化を検討する必要があります。そして、考える施策が顧客にとって望ましいかどうかも重要であり、自社にとって効果的な差別化施策を見出すことの難しさを痛感しました。 顧客視点はどう? 今回の学習では、自社の製品やサービスの分析だけでなく、自分自身が顧客として製品・サービスを選ぶ際にも差別化を意識することが肝要であると感じました。 採用でどう差別化? 人事業務の中で特に差別化を考えやすいのは採用の場面です。例えば、給与を競合他社よりも高く設定するというコストリーダーシップ戦略には限界があるため、他社との差別化を図る必要があります。そこで、福利厚生や社風、働く環境といった金銭以外の要素を訴求し、応募者に自社の魅力を伝えることが有効です。そのため、まずは自社へ応募してくる人々がどのような企業と競争しているのかを調査し、企業選択における重要な要素を人材エージェントから収集・分析します。さらに、自社のSWOT分析と組み合わせて訴求ポイントを明確に整理します。 組織開発の秘訣は? 私の主な業務である組織・人材開発については、自社分析というよりも、世の中にある関連サービスの差別化ポイントを見極め、自社の強みを伸ばし弱みを克服するために最適なサービスを選ぶことが重要だと感じました。自社の課題を解決するために適したサービスを見極めるには、各会社が提供するサービスの訴求ポイント(低価格、独自機能、細やかな対応など)を徹底的に分析する必要があります。 施策選びはどう? 組織・人材開発の施策を企画する際には、まず自社のSWOT分析を行い、課題としてネックになっている要素(コスト、種類、使い勝手など)を抽出します。その後、各社のサービスがそれぞれの要素に対してどのような提供内容を持っているかを整理し、比較検討します。

データ・アナリティクス入門

思考を深める分析スキルの実践

ロジックツリーの見直しは? 私はこれまでにロジックツリーを用いてメモを取っていたものの、情報に漏れや重複があると感じていました。分析には多様なフレームワークや考え方があるため、正しく使用しないと適切な結果を得られないことを再認識しました。特に、MECE(Mutually Exclusive, Collectively Exhaustive)については軽視していましたが、集団を正確に切り分けることが重要であることを学びました。 感度の良い切り口を取り入れるには? 課題の分析においては、提示された回答と異なる視点で取り組むことがありました。これは必ずしも悪いことではありませんが、今回の回答の方がより優れた切り口であるように思いました。「感度の良い切り口」を意識することが今後の分析への貴重な教訓となりました。層別分解と変数分解についても、これまでは曖昧な使い方をしていたと感じています。どちらを用いるべきかを意識することで、より効果的に分析できると考えています。 さらに、「感度の良い切り口」と「意味のある分け方」という概念は、忘れがちなものの、非常に重要であると感じました。 新たな職場での挑戦とは? 来期には新しい職に就く予定ですが、具体的なイメージはまだ掴めていません。今までの経理財務の経験を活かしながら、売上や費用の分析にロジックツリーやMECE、層別や変数での分解を活用したいと思っています。「感度の良い切り口」や「意味のある分け方」を意識しつつ、分析に取り組んでいくつもりです。 ロジックツリーやMECEを利用する際には、頭の中だけで考えず、図示することによって理解を深めたいと思います。図示した内容は資料として保存し、後からの利用やプレゼンテーション用に加工する際にも役立つでしょう。簡単な方法として、エクセルで図示を試みたり、以前使った「Xmind」というアプリを利用してロジックツリーを描いてみたりすることも考えています。これを機会に、ロジックツリーに挑戦してみようと思います。

「分析 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right