データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

データ・アナリティクス入門

仮説で挑む、学びの冒険

仮説の違いは? 仮説について、まず結論の仮説の例として、ある飲料のターゲット事例が挙げられます。これはコミュニケーションで活用されるもので、いわばあるテレビ番組で語られる説に似た考え方と言えます。一方、問題解決の仮説は、現状と理想の間に生じるギャップに着目し、その具体的な発生箇所や原因、そしてどのように対処すべきかについて仮の答えを提示するものです。 目的はどう決まる? また、仮説は目的があって初めて生まれます。たとえば登山中に道に迷った場合、どの方向へ進むべきかという仮説は、生存という根源的な目的から生じます。仮説生成を駆動する目的は大きく以下の3つに分類されます。まず、課題解決型の目的は、差し迫った問題に対処するために生存を確保する意図から生まれるものです。次に、探究型の目的は、なぜある現象が起きるのかという疑問や違和感を解消したいという好奇心に基づきます。最後に、変化志向型の目的は、現状に閉塞感を感じ、新たな選択肢を模索する動機から生じるものです。これらの目的は互いに重なり合いつつも、いずれも現状に対する不全感という出発点を共有し、仮説を突破口として機能させています。 行動へのつながりは? 自分や周囲が抱く仮説やアイデアが、結論を導くものなのか問題解決のためのものなのかを意識的に分析することが大切です。また、好奇心や物事に対する違和感といった感情を大切にしながら、仮説生成の駆動力を維持する必要があります。さらに、仮説検証はあくまで手段であり、目的そのものではありません。どれだけエレガントな分析であっても、最終的にはその分析結果をもとに具体的な行動を起こすことが肝心です。行動を促すために必要最低限の分析に留め、実際のマップ、ループ、リープといったプロセスを回しながら、目的意識に基づいた行動を心掛けたいと思います。

マーケティング入門

受講生の学びが未来を拓く瞬間

企業と候補者の調和は? 私は金融業界に特化したリクルーティング事業を展開しており、企業と転職希望者の双方のニーズを同時に満たすことが求められます。一方だけに偏るのではなく、双方がwin-winとなる関係を目指すことが、良いマッチングの実現につながります。 採用戦略はどう考える? そのためには、企業側が求める「経験」や「スキル」に加え、職場の文化にマッチし、即戦力として活躍できる人材を確保することが重要です。また、採用計画の充足や市場での評価のフィードバック、さらには専門的な転職サポートや他社の成功例・失敗例からの学びといった点も、企業の期待に応えるための大きな柱となります。 転職で自己実現は? 一方、転職希望者にとっては、転職を通じて自己実現を果たし、自分の才能や価値をより深く理解したうえで、適したキャリアパスを選択できることが重要となります。市場のニーズを踏まえ、選択肢を広げる提案が求められ、自分では気づかなかった新たな才能や可能性を発見する機会にもつながります。また、転職後のキャリアの発展や希望する企業への最終サポートも重要な要素です。 共有ゾーンの意味は? このように、それぞれのニーズの重なる部分―いわゆる「共有ゾーン」―を広げることが、企業にとって成果を上げる採用と、候補者にとって充実した転職の両立の鍵になると考えています。 マーケティングの本質は? さらに、マーケティングとセリングの違いについては、マーケティングの側面である分析や創造の部分をより具体的に理解したいと考えています。マーケティングの本質は、顧客に価値ある提供物を創造し、それを伝達・配達・交換する仕組みを作ることにあり、販売自体の必要性をなくすことを目的としているという考え方は、非常に興味深いと感じています。

戦略思考入門

競争優位を築くための発想転換の鍵

顧客設定は何が鍵? 差別化戦略を考慮する際、まず重要なのは顧客設定です。顧客設定を行った後、その顧客にとって価値があるかどうかを検討します。そして、顧客の視点で選択可能なすべての競合を考慮し、それらの競合との違いを意識することが鍵となります。特に、自社の強みを活かした差別化は非常に効果的です。 VRIO分析で本質を見つける? 競争優位を実現できるかを評価するためには、VRIOフレームワークが有効です。これには、以下の観点が含まれます。まず、経済的価値を持っているか、市場規模や持続可能性を考えます。次に、希少性を持つか、経営資源の独自性を評価します。さらに、模倣困難性があるかを検討し、組織力が整っているか、持続可能な体制や仕組みがあるかを確認します。 DXサービスの未来はどう見る? 自社のDXシステム開発サービスについて、このフレームワークを用いて分析してみます。まず、経済的価値については肯定的です。しかし、希少性は特に見当たらず、模倣も簡単です。ただし、組織が若いため持続は可能でしょう。そのため、現状では競争劣位ではないものの、競合に対する大きな優位性もなく、単なる競合均衡状態に留まっているといえるでしょう。 特化戦略で優位を創出する? そこで、希少性を生み出すため、発想を転換します。DXシステム開発の範囲は広いため、特定の業界に特化したDXシステム開発を検討します。この場合、ドメイン知識が非常に重要となります。自社がこの知識を持ち、大規模な案件開発の経験を有していれば、希少性を確立できます。 持続優位はどこから生まれる? 再度VRIOフレームワークで分析すると、経済価値があり、希少性があり、模倣も困難であることから、若い組織であっても仕組化に成功すれば、持続的な競争優位を築く可能性があります。

データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

戦略思考入門

差別化に挑む私の学びの旅

ターゲットは明確? 差別化のためには、まずターゲットを明確にし、顧客や市場、競合、自社をしっかりと分析して、強みと弱みを整理することが重要です。強みや弱み、機会、脅威を浮き彫りにしつつ、実現可能性と継続可能性も考慮して施策を検討します。 独自のアイデアは? アイデアを考える際には、ありきたりな発想に飛びつかず、深く考えることが求められます。他業界からの発想を取り込むことで新しい視点が得られるかもしれません。また、集合知の活用は、アイデアの質を高める一助となり、自社の強みを意識しつつ、必要に応じて外部の力も借りることが重要です。ライバルにとらわれず、新しい差別化を追求します。 強みの活用はどう? 自社の強みを最大限に活用するには、VRIO分析が有効です。特に課題として感じるのはO(持続可能性)の部分です。経営資源を効果的に活用し、持続可能な組織化を図ることが求められます。この視点を自分の働き方に取り入れて、業務に反映したいと思います。 現状の整理はどう? 業務においては、現状を的確に把握して分析し、施策の実現可能性、継続可能性、模倣容易性、顧客ターゲットを明確に整理することが重要です。他のプロジェクトとの差別化を図るため、課題を整理し、重複しない施策を立案します。 業務効率はどうですか? また、バックオフィス業務の効率性を追求し、無駄を省いて既存の業務を見直します。業務が属人化しないように、統一したルールを設け、過去と未来の業務の違いを考慮しながら進めていきます。 自分の軸はある? 自分自身が社内でどのようなポジションで進むべきかについて、まずは自分の強みを理解し、VRIO分析を行います。自身の不足を補い、模倣のできない分野を伸ばして、自分独自の仕事の軸を持つことが重要です。

デザイン思考入門

解決策じゃない!問いから始まる学び

アンケート変更の必要は? 自社サービスのユーザー向けに定期的に開催しているイベントでのアンケートについては、これまで項目を変更せずに実施してきました。項目変更を行うと比較が難しくなると考えたためです。今後は、アンケート内容に本当に変更の必要があるのか、改めて問い直しながら検討していきたいと思います。 インタビュー内容は羅列になる? ユーザーインタビューでは、インタビュー後の記事化において、質問内容と返答が単なる羅列になりがちな点を改善する必要を感じました。コーディングを実施することで、情報の分析がしやすくなるとともに、他者へ伝わりやすいアウトプットにつながると考えています。まだ試行段階ですが、各担当者と意見交換の場を設け、特にインタビューに関しては、こちらが意識してヒアリングしないと暗黙知を引き出せないため、事前に質問項目に組み込むか、必須項目としてルールを決めることにしています。 定性定量の違いは何? また、今回の取り組みで、解決策を前提に課題を定義しないという考え方や、分析データの収集方法には定量分析と定性分析の2種類があることを認識しました。定性分析は、感情など数値化や可視化が難しい情報の解析に適しており、暗黙知と形式知の両面を理解することが大切です。暗黙知については、こちらから意識して引き出す必要があると感じています。 課題設定はどう見直す? これまで、課題は解決策をあらかじめ想定したうえで捉えていたため、今回の「解決策ありきで課題を定義しない」という視点は大きな気づきとなりました。定性分析の難しさを実感しているため、まずは自分自身のナノ単科におけるカスタマージャーニーを作成し、感情の可視化の練習からアプローチのコツをつかめるよう挑戦していきたいと思います。

アカウンティング入門

財務分析で企業の真価を見抜く方法

現金の動き、どう感じる? 「現金として出入りしやすい順」に並んでいるという視点を知ることができたのは、大きな発見でした。現金の出入りがしやすい(1年以内)ものを「流動」、出入りがしにくい(1年以上)ものを「固定」と考えるのも、個人的には非常に共感できるポイントでした。 企業のB/Sはどう? 事例として紹介されていた具体的な企業名を挙げることは避けますが、固定資産の多い企業において、事業の特徴がその企業のB/Sから読み取れるのは興味深かったです。特に、鉄道会社や不動産会社の固定資産が大きな割合を占めることを考えると、他の同業他社と比較してみたくなります。 流動計上、納得できる? また、買掛金など営業サイクルに含まれる資産・負債を流動とする考え方も、1年以内に現金として出入りするものとして理解しやすく納得しました。 B/S活用場面は? ①B/Sを現実の場面で活用するイメージがまだ明確にできずにいます。例えば、M&Aのニュースがあった際、買われる企業のB/Sを見て、純資産とのれんの程度を確認し、その買収額が妥当かどうかを掴むのに使えるかもしれません。 買収の価値は? ②また、買収先を検討する際、その企業の価値やシナジーを考える上で、妥当な買収額をイメージするための参考にしたいです。 業界分析、進む? 11月中に、人材業界の競合他社のB/Sを5社確認し、各社の資産・負債における流動・固定、純資産の割合の違いを比較してみる予定です。さらに、建設業界とエネルギー業界についても、それぞれ5社の特徴を調べてみようと思います。仮説としては、人材業界は、特定の企業と純資産の割合が近いとされ、建設・エネルギー業界は、特定の企業と固定資産の割合が似ていると考えています。

データ・アナリティクス入門

データ分析で失敗しないための初めの一歩

データ分析の初め方とは? データ分析を始める際、最初に注意すべき点は、いきなり「How」に飛びつくのではなく、まず原因を特定することが重要です。また、何を理想的な状態とし、そのギャップをどう見なすか、関係者との合意を得ておくことが肝心です。 MECEの概念とその活用法 MECE(Mutually Exclusive, Collectively Exhaustive)の概念については、有意義な切り口で切り分けることが大切ですが、乱用には注意が必要です。 データ分析の精度を高めるには? データ整理とデータ分析の違いや、分析の精度と説得力の関係については、明確な理解が求められます。例えば、データ分析がどのケースにより合致するかも考慮すべきです。現状から改善を目指すケース、あるいは未来に向けた戦略的なケース、それぞれに適したアプローチがあります。また、需要予測と異常検知といった異なるケースでの適用の違いも理解しておくと役立ちます。 ケースAの分析方法は? ケースAでは、例えばWEBサイトからの問い合わせデータや営業がSFAに入力した案件データを分析することが考えられます。現状の問い合わせ数に基づき、来期の目標やポテンシャルを過去のデータから算出するために変数分解を行います。 ケースBでの説得力あるストーリーの構築法 一方、ケースBでは、例えばグループウェアの切り替えに際し、役員を説得するためのデータ準備が求められます。説得力のあるストーリーを構築するために、現実的に入手可能なデータを調べることが重要となります。 具体的な結果を得るために これらのポイントを踏まえ、データ分析の取り組みを進めることで、より具体的で説得力のある結果を得ることができます。

リーダーシップ・キャリアビジョン入門

変化に挑むリーダーの軌跡

リーダーは変化に対応? リーダーは、状況に応じて自らの行動を変容させる必要があります。その際、設定された目標の必要性や難易度、チーム内にコンフリクトが存在するかどうかといった環境要因と、部下の経験、能力、意欲、自立性といった適合要因の双方を考慮することが求められます。 4タイプの違いは? リーダーの行動は、指示型、支援型、参加型、そして達成志向型の4つのタイプに分類されます。環境の変化や部下の成長に伴い、時間の経過とともにこれらのタイプは変化するだけでなく、状況によっては複数のタイプを組み合わせて活用する必要もあります。 環境をどう読む? まず、環境要因の把握が重要です。特にチーム内のコンフリクトの有無やその原因の分析を行うことは、リーダーとしての柔軟な行動変容に直結します。一方、部下の能力情報を多方面から収集し、自立性を支援する組織体制を整えることが求められます。また、マネジリアル・グリッドにおいては、社交クラブ型のリーダーが存在する場合もあり、そのようなリーダーに業績への関心を深めてもらうための支援も重要です。 使い分けはどうする? さらに、状況に応じた4つのタイプの使い分けが効果的です。特に、ゴールが不明瞭な案件やチーム内にコンフリクトが生じている場合には、一定の段階までは指示型のスタイルを採用することが望まれます。そして、各プロジェクトが軌道に乗り、部下の能力や専門性が向上した段階では、参加型のスタイルへと移行することが適切です。職員の動機付けのためにも、達成志向型の姿勢を定期的に示すことが効果的です。 本質は何か? このように、状況に応じて柔軟に行動を変化させる姿勢を示すことで、変化を恐れないリーダーとして組織を牽引することができます。

データ・アナリティクス入門

仮説で挑む学びの冒険

仮説はどこから始まる? ■仮説を立てる 仮説を立てる際には、まず3C分析や4P分析などのフレームワークを活用し、幅広い視点で考えることが効果的です。複数の仮説を挙げ、これらの中から絞り込むことで、反論や別の可能性を排除できるように意識することが大切です。また、意図的に役割や網羅性を持たせることもポイントとなります。 検証はどう行う? ■仮説を検証する 仮説を検証する際は、比較の指標として平均や標準偏差などのデータ評価の手法を選ぶとよいでしょう。加えて、データ収集の際には「誰に」「どのように聞くか」に十分注意し、有力な仮説の検証に加えて、他の仮説が成立しないことを示すデータも集める必要があります。 仮説の違いは何? ■仮説の分類と意義 仮説には「結論の仮説」と「問題の仮説」の2種類があります。複数の仮説を立てることで、検証マインドや説得力が向上し、関心や問題意識が高まるだけでなく、物事のスピードや行動の精度も向上することが期待されます。 最初は何から進める? 仮説が求められた場合、最初にどこから取り組めばよいかわからなくなることがありますが、その際はフレームワークを活用するのが良いと考えています。実際、過去には「クロスセルで自社商品と相性のよい商品は何か?」や「価格変更による影響」を検討した経験があります。似たような課題に対しても、あらゆる仮説を立てたうえでロジックツリーに当てはめ、優先度を決めながら、時間をかけて分析すべき事項を整理していきたいと思います。 有力仮説はどう選ぶ? どのように客観的な仮説を複数挙げるか、また有力な仮説に偏りが生じた場合にはどのように対応すればよいかについて、具体的な方法を検討したいと考えています。

データ・アナリティクス入門

共通認識が導く納得の意思決定

なぜ納得できない? これまでのGAiLでは、解説を読むたびに納得感を得られる部分が多かったのですが、今週はどうしても納得できない点がありました。設問3のデザイン変更の方法案について、解説では「コスト」「スピード」「意思疎通」に点数を付け、その結果として最適なものは「案3」とされていました。しかし、私が認識していた各指標の点数が異なっていたため、別の案を回答してしまいました。 共通認識は必要? この経験から、意思決定支援を行う際には、分析結果に基づいて「How」を考える前提として、共通認識(認知の歪みがない状態)を持つことが非常に重要だと感じました。たとえ分析結果から具体的な手法が導かれたとしても、共通認識が欠けていれば相手に納得感を与えるのは難しく、実際の実行段階で問題が生じる可能性があります。そうした意味で、仮説をしっかりと研ぎ澄ますことが大切だと理解しました。 A/Bテストはどう見る? A/Bテストについては、ダイレクトリクルーティングにおけるスカウト送付の場面で有用と考えています。たとえば、①スカウトメールの件名、②本文、③添付の求人票といった要素で比較検証を行う方法が挙げられます。一方で、各グループ間の介入の違いはできるだけ絞る必要があるため、比較対象が不必要に増えないよう、明確な仮説に基づいて取り組むことが求められます。 どう候補者を絞る? また、ほとんどの場合、データサイエンティストという職種名で求人票が作成され、スカウトメールが送付されているため、まずは候補者を①データサイエンティストとしての経験の有無と、②データサイエンティストを希望しているかどうかの2点で分類し、返信率への影響を検証していきたいと考えています。

「分析 × 違い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right