データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

アカウンティング入門

数字で学ぶ!本気の経営戦略

利益と費用の違いは? カフェのケーススタディを通して、費用がP/Lのどの科目に該当するかや、売上総利益、営業利益、経常利益、税前当期純利益、当期純利益といった5つの利益の違いが明確になりました。 事業準備はどう進む? 事業を始める際は、まずどのようなコンセプトで展開するか、ターゲットとなる顧客を明確にすることが大切です。その上で、どんな準備を行い、どの程度の費用をかけるかというストーリーをしっかり作り込むことが、利益を生み出し事業継続に寄与するという視点を得ました。 価値本質はどう捉える? また、事業の価値の本質を見失わず、同業他社との比較を通じて自分の事業を客観的に把握することの重要性も感じました。これにより、コスト削減などの具体的な改善策を検討する必要性が理解できました。 施設比較はどんな結果? 今後のアプローチとしては、まず複数の施設がある場合、各施設のP/Lを並べて比較し、施設ごとの特徴を把握する方法を取ります。全体的な課題と各施設ごとの課題を抽出し、それぞれに対応するコスト削減案を策定することで、利益改善を目指していきたいと考えています。 どの課題に注目? 具体的には、先月の月次P/Lを確認し、赤字部門の課題を洗い出して対応策を講じるとともに、前年度同月との比較を行い、黒字部門でも利益が低下している理由を分析して改善策を考えました。これらの検討結果を基に、収支改善に向けた次月の行動計画を作成し、メンバーと共有の上、実際に動いていく所存です。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

マーケティング入門

顧客の声を活かしたリブランディングの秘訣

顧客の声はどう活用する? 顧客が自社商品をどう見ているのか、そして自社のアピールが過剰になっていないか、立ち止まって考えることが重要だと学びました。そのためには、アンケートなどを通じて顧客の声を集め、適切なPRやネーミングを確立することが必要です。特にある食品会社が製品のネーミングをリブランディングしたケースは、顧客の意見をうまく反映した好例です。 競合に惑わされない方法は? しかし、初めは顧客に目を向けていても、ついつい競合他社を意識したPRになりがちです。このような罠に陥らないためにも、自社商品の特性を理解し、顧客や取引先が自社製品をどのように捉えているかを確認することが大切です。もし、自社が伝えたい魅力と顧客の認識にズレがある場合は、それを真摯に受け止め、分析することが求められます。他の成功事例に学び、顧客の声を迅速に反映するよう、関係各所と連携していくことが重要です。 マーケティング思考を鍛えるには? このような取り組みを行うために、まずは自身のマーケティング的視点と思考力を鍛えることが求められます。例えば、ネットショッピングやスーパーでの買い物の際に、売れていない商品の印象とキャッチコピーの違いを考えることがトレーニングになるでしょう。 顧客の印象をどう改善する? その上で、自社商品のアンケート結果から顧客のネガティブな印象を拾い上げ、その差を埋めていく努力を行います。このようにして、顧客から見て魅力的な製品にしていくことが目標です。

クリティカルシンキング入門

問いの力で未来を切り拓く

講座学びはどう活かす? 今までの講座で学んできたことが、今回の講座の軸になると感じました。他の講座では、切り口の考え方、データの読み解き方、そして言葉や資料での伝え方を学んできました。しかし、これらを組み合わせるだけでは、でき上がった答えが素晴らしいものであっても、間違いになりかねないと思いました。重要なのは、現在の状況を踏まえたうえで、どのような答えを出したいかを「具体的な問い」の形で先に設定することです。これにより、無関係な議論を避け、方向性の合った議論や分析を行うことができます。 問いの質を高めるには? この考え方は、新商品やリニューアルの方向性について議論する際に非常に役立ちます。以前は「●●はどうか」という程度の問いしか出せませんでしたが、今後はより本質的で具体的な問いに落とし込めるようにしたいと考えています。「この状況において考えるべきこと」を常に意識し、それを自分で考え、周りにも示していけるようになりたいです。 実践ステップはどうする? 業務に対しては、次の順序で実施していきます。まず、議論を始める前に「問い」を考えます。次に、皆で「問い」を出し合い、どこに狙いを定めて議論をするかを決めます。そして、解決したいこと、現在の状況、「問い」が繋がっているか、ズレていないかを確認します。「問い」に合った議論を行い、答えを導き出します。その後、「問いに合っているか」「解決策になっているか」を確認してから実行に移す、という流れを意識していきたいです。

クリティカルシンキング入門

データを分解して新しい発見を得る方法

少ないデータを分解する方法は? 少ないデータを最初に見たとき、「わかることが少ない」という印象を持ちました。しかし、データを分解して考えることで、新たに見えてくる情報があることを実感しました。求める情報に対して、適切な分解方法を考えることができるようになったと感じています。 新しい気付きが得られない時の対処法は? また、分解しても新しい気付きが得られない場合でも、それは失敗ではなく、新たな学びであるという考え方に勇気をもらいました。この経験を経て、MECEを意識してデータ全体をさまざまな視点から分析し、手を動かして新しい情報を得ることを心掛けています。 具体的には、顧客データを分析し、仮定していたペルソナとのギャップを発見したり、イベントの参加アンケート結果を基に告知と実際の内容の違いを分析したりしています。また、施策の結果を数字だけでなく、さらに深く分解し新たな情報を提示しつつ判断しています。データを他のチームに依頼する際には、目的や期間を明確に伝え、無駄なデータのやり取りを減らすことを意識しています。 どんなデータが必要か整理するには? 「どんなデータがあれば知りたい情報が得られるのか?」をまず整理し、実際に手を動かしてデータを分解しグラフ化することで、多くの新たな発見が得られます。アンケートを行う際には、逆算して負担を軽減する項目や回答方法を検討し、Excelなどの利便性の高いツールを活用して効率的にデータを見られる環境を整えています。

リーダーシップ・キャリアビジョン入門

リーダーシップスタイルの使い分け術

リーダーシップの4つのスタイルとは? 効果的なリーダーシップ行動について学びました。リーダーシップのスタイルとして、指示型、参加型、支援型、達成志向型の4つがあります。この4つのスタイルについては、どのような仕事や相手に対しても、それぞれ使い分けることが必要です。しかし、スタイルを意識しすぎるのではなく、仕事や相手に注目して、その状況に適したリーダーシップの行動を自分なりにイメージすることが重要です。このイメージを繰り返すことで、自分なりのリーダーシップの型を形成していくことが大切です。 行動を振り返る意義は? それぞれの仕事や相手に応じて、状況をよく考えた上で行動を決定し、実際に試みてみることをお勧めします。そして、しばらくの間は意識的にその行動を振り返ることが求められます。 具体的な仕事ごとの対応方法は? 具体的な仕事についてですが、採用、研修、運営に関しては現時点では支援型で対応を進め、企画については参加型を、DXやFSには指示型を採用しています。特に、DXと採用に関して同じ相手とのコミュニケーションが今週予定されているため、自分の中で意識的に違いを持ちながら物事を進めてみたいと思います。 自己分析で何が変わる? スタッフと対話する際には、どんな相手で、どんな仕事を行うのかを意識し、行動を変えていくことが重要です。また、これまでの自分の行動からどのように変わったのかを自己分析することも含まれます。

クリティカルシンキング入門

視点を変えると見えてくる課題解決の鍵

根本原因はどう探る? 問題や課題に直面した際、それらの背景や根本のイシューを特定することが最初に、そして非常に重要であるということを学びました。イシューの特定や設定には、立場や部門の違いから様々なアプローチが考えられ、必ずしもイシューが一つではなく、複数存在することもあるという理解が深まりました。 品質不具合の真実は? 多く発生するのは品質の問題であると考えられます。社内での問題であれば、「なぜこの不具合が発生するのか」という視点でのイシュー特定が一般的ですが、逆の視点、「なぜこの不具合が顧客から受け入れられないのか」という視点でのイシュー設定も可能であるという新しい学びを活かしたいと考えています。具体的には、この不具合が直接取引の顧客でどのような問題となるのか、さらには最終ユーザーではどのような問題となるのかという視点を取り入れれば、品質責任の負担を平準化したり、過剰スペックを是正したりすることに繋がる可能性があると感じました。 会議で何を疑問視? 週次で開催される品質会議では、不具合に関する品質部門からの分析内容やその是正に向けた対策について、自分自身が何か疑問を持つように意識することが重要です。「何が問題か」「どこで発生するのか」「なぜ発生するのか」といった基本的な把握に加え、問題や品質がなぜ顧客に受け入れられないのか、顧客でどのような問題に繋がるのかという視点を持つことから始めていきたいと考えています。

データ・アナリティクス入門

MECEで見つけた問題解決の新たな視点

問題解決の4ステップとは? 普段、何気なく課題を立てる際にwhat、where、why、howを使ってタスクを起こしていましたが、これが問題解決における4ステップであることを今知りました。そのため、4つを順に行わず、whatとhowばかり考えてタスクに起こしていたことが間違いだったと気づきました。 効果的なMECEの活用法は? MECEを活用してロジカルツリーの作成、ロジカルに課題解決を実践することで、少人数のチームでも短時間で効果を上げるサイクルを構築していきたいと思います。今後はプロセスを踏み、自社サービスの課題解決に向けて努力していきたいです。 どのようにMECEを実践する? MECEの概念についてはなんとなく知っていたものの、それを実践できていなかったと感じています。早速活用したいと思います。特にSEOコラムのオーガニックを増加させるために、MECEで分類してから細かく分析したことがないので、試してみたいと感じました。他の分類においても、影響力が少なくてもどこまで細かく分類すべきかを考えるのは難しいと感じます。 タスクの明確化はどう進める? まずは、自身のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録の増加(且つ正しいキーワードと属性のユーザー獲得)を最短でどこからできるのかを検討します。その後にスケジュールを立ててチームに共有したいと思います。

マーケティング入門

伝わる商売の極意―顧客視点の力

マーケティングの意味は? マーケティングの基礎を体系的に整理することができ、セリングとマーケティングの違いや「顧客志向」の重要性を改めて実感しました。単にモノを売るのではなく、「誰に売るのか」「何を売るのか(どの部分を強調するか)」「どのように売るのか(どのように伝えるか)」の3点を徹底的に洗い出すことが、顧客による価値創造―ヒット商品の実現―に繋がるという理解に至りました。 顧客対応はどう見る? また、商品やサービスの販売に留まらず、他者との関わり全般においてもマーケティングの考え方は十分活用できると感じています。例えば、自身が担当するバックオフィス業務では、社内のやり取りを一種の顧客対応と捉え、ペインポイントやゲインポイントの追及、新しい書式やフォーマットの共有の際に「イノベーションの普及要因」を意識することで、混乱を防ぎ、伝えたい内容がより効果的に伝わると実感しました。特に、今後は「わかりやすさ」と「試用可能性」を意識して取り組んでいきたいと考えています。 分析で何が分かる? また、STP分析、4P、6Rといったフレームワークの型や活用方法、順位付けについて学びましたが、まだ表層的な知識であるため、まずは実際に活用することで理解を深めていくつもりです。新規の移管事業においても、口コミの感情分析などを通してペインポイントの抽出や競合分析にマーケティングのアプローチを積極的に取り入れていく予定です。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

クリティカルシンキング入門

ナノ単科で人事業務の分析力が大幅アップ!

5W1Hで分析する意義とは? MECEを意識して、5W1Hの視点でモレなくダブりない区分で分析することを実践してみました。その結果、違いがない区分を見つけることの重要性を実感しました。逆に、違いがあると分かった区分については、どの単位で区分することが最も効果的な分析となるかを検証しました。 人事業務への具体的な応用例 担当する人事業務について、以下の場面で活用してみたいと考えています。 採用戦略の見直し方は? 採用については、自社に合う応募者の層を拡大し、志望度を向上させる施策を検討します。具体的には、志望度が高く選考に臨む層の分析を行い、現在効果的に志望度を高められていない層へのアプローチも検討します。それらの分析結果に基づいて、採用イベントや選考プロセスの改善にも取り組みます。 効果的な研修とは何か? 研修については、業務に実効性のある研修の特定と拡充を目指します。具体的には、どの種類の研修が効果的で実務に活用できているか分析し、効果的な手法を拡大する一方で、効果が薄い手法の改善も検討します。 エンゲージメント向上施策を探る エンゲージメントについては、エンゲージメント高く仕事に取り組んでいる層を判別し、逆に低い層の傾向を把握します。具体的には、高いエンゲージメントを持つ層の共通点を事例として紹介し、低い層の改善施策を検討していきます。

「分析 × 違い」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right