クリティカルシンキング入門

正しいイシューが未来を拓く

イシューはどう見る? 今ここで答えを出すべき問い、すなわちイシューに着目する大切さを再認識しました。正しいイシューを設定するためには、まず現状を正確に理解し、問いを残し共有・意識することが必要です。ファストフード店の事例を通して、客離れの改善策を探る際に一面的な視点ではなく、幅広い視点で検証する重要性を感じました。 課題整理はどう進む? また、日常業務においては大小さまざまな課題が常に存在しており、それぞれの課題を抽出・整理し、優先順位を付けて実行、結果を分解して分析することが業務推進に欠かせないと実感しています。今回の学びを通じて、論理的なアプローチが業務の改善に直結することを実感しました。 論理で歩む未来は? さらに、Week1から5で学んだ視点の変化や分解、イシュー・結論・根拠の整理、グラフ化といった方法論を今後の業務に積極的に取り入れ、より明快で論理的な進め方を心掛けていきたいと思います。プレゼンテーションにおいても、相手を意識した論理的で分かりやすい資料作成および説明に努め、会議では不要な話題を避け、常にイシューに意識を向けながら参加していくつもりです。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

あなたの学びも変わる仮説の魔法

仮説の全体像は? 仮説とは、ある論点に対して仮の答えを示すものであり、全体像を把握しながら考察を進めるための土台となります。ここでは、結論の仮説と問題解決の仮説という2つの視点があり、それぞれの性格や時系列に応じて中身が変わる点が特徴です。複数の仮説を立てることで、論点全体を網羅的に捉え、さまざまな角度から検討することが可能となります。 問題の原因は? 問題解決の仮説は、具体的な問題の解決を推進するための仮説です。まず、現状を整理し、解決すべき問題が何か(What)を明確にします。次に、その問題の所在(Where)がどこにあるのかを特定し、さらに原因追及(Why)によりなぜその問題が発生しているのかを分析します。最後に対策としてどのように対応すべきか(How)を検討することで、実効性のある解決策を提示できるようになります。 論点整理はどうする? 日常の業務においては、まず現状を正しく把握し、解決すべき論点を洗い出す必要があります。洗い出した各論点に対し、上記のWhat、Where、Why、Howの順に論理的に仮説を整理すると、より具体的で実践的な解決策を構築しやすくなります。

アカウンティング入門

構成要素で読み解く利益のヒミツ

構成要素ってどう考える? 構成要素を考えるという視点が特に印象に残りました。高い売上高の要因を探る際、まず売上を単価と客数に分けて整理し、それぞれを分析することで全体を正確に把握できるという点が学びとして響きました。 利益向上はどう実現? また、利益向上のためには売上を伸ばすか、コストを下げるかの二つの選択肢があるものの、単純にコストを削減するだけではなく、その結果として売上に悪影響が出ないかを注意深く検証する必要があるという考え方にも納得しました。 実務にどう繋げる? 直接業務に活かすのは難しい部分もありますが、分析の際に構成要素に分けて考える姿勢や、影響度合いを踏まえた意思決定の重要性は、日常業務においても間接的に活用できる貴重な学びだと感じました。 他業界の意見は? 今回の設問では、コーヒー豆の単価が下がることによる影響や、なぜ売上が順調であるのかを考えることで、利益向上のために売上を伸ばす方法や、削減すべきコスト、必要な情報について再考する良い機会になりました。また、他業種・他業界の方々がどのような視点を持っているのかを伺ってみたいという期待も浮かびました。

クリティカルシンキング入門

比較と変化で見つける新発見

比較と変化は? 私は、日常の分析活動で「比較」と「変化」の視点が非常に重要であると実感しています。どの分野においても分析は欠かせず、特にメンバーから提出されるレポートを評価し、判断や助言を行う際にこの視点は大きな指針となります。 グラフで何が見える? そのため、視覚的な要素、特にグラフの活用が不可欠です。グラフはデータの比較や変化を直感的に理解させる力があり、情報を分かりやすく伝えます。また、グラフを用いた分析においては、対象を適切に分解することが重要です。この分解はMECEの原則に基づき、内容を重複なく漏れなく整理することが鉄則です。 分解の方法はどう? 分解の方法としては、基本的には均等な分割が王道ですが、状況によっては不均等に分けた方がより筋の通った分析ができる場合もあります。この柔軟な発想で分析することが、実践において非常に役立つと感じています。 分析の極意は何? 以上の理由から、比較と変化の視点を大切にし、視覚的ツールとしてグラフを積極的に用いるとともに、MECEに基づく分解を意識することが、日々の分析やレポート作成において極めて有効であると考えています。

データ・アナリティクス入門

仮説検証で切り拓く成功の道

問題整理のポイントは? データ分析を進める上で、What、Where、Why、Howという問題解決のステップを行き来しながら整理することが非常に大切だと感じました。こうしたステップを意識することで、問題を深く理解し、的確な改善策を導き出すことができると思います。今までプロセスを細分化して考えることを怠っていた分、今後はその重要性を再認識し、確実に実行していきたいと考えています。 テスト検証の極意は? 特に、A/Bテストにおいては、条件を揃えて1要素ずつ検証することが成功の鍵であると改めて実感しました。これまでステップを踏んで分析を進めることはできていたものの、動きながら仮説を試し、データを収集する視点が不足していたと感じます。今後は、常に仮説検証とデータ収集を並行して進める必要があると認識しています。 実施環境をどう見る? また、実際に業務でA/Bテストを実施する際、特定の店舗でのみ実施していたため、環境要因に対する配慮が不足していたと感じました。今後は、各店舗ごとの環境差を考慮した上で、より均等な条件でテストを行い、信頼性の高いデータを得られるよう努めたいと思います。

データ・アナリティクス入門

ロジックで磨く問題解決力

どうすれば問題を整理? 問題解決においては、まず「What⇒Where⇒Why⇒How」の順で分析を進めることが重要だと実感しています。特に、何が問題なのかを正確に把握するためには、問題の要素を十分に分解することが必要です。これまでは、要素分解が不十分であったと感じたため、今後はロジックツリーを活用し、問題解決に必要なポイントを漏れなく洗い出していきたいです。また、図を用いてMECEの観点から整理することで、問題の俯瞰と検索がしやすくなると感じています。 運用方法は本当に適切? 現在、チーム体制の転換期にある中で、従来の運用方法では今後問題が生じる可能性があると予想しています。実際に、これまでの運用を続ける場合にどのような問題が発生するか、その理由を今回のプロセスで分析できると確信しています。今後は、運用メニューや業務内容を特定の要素に分解し、MECEを意識しながら、問題の特定に取り組んでいきたいと考えています。 定性分析で何が見える? さらに、仕事において定性的な問題を分析する際、定量的な視点や切り口を増やす方法を学び、より具体的な分析に結びつけていければと思います。

マーケティング入門

実践で見える!サービス革新の鍵

なぜ売れる理由は? 実際にある企業を例にとり、その商品の売れる理由を実践的に分析する機会がありました。この分析から、自社の強みについて改めて考えるきっかけとなりました。 どう顧客を捉える? また、顧客ニーズを深く理解するために、カスタマージャーニーやペインポイントに着目する手法を学べた点も大変有益でした。自社サービスにおける改善のヒントを得ることができたと感じています。 どこに改善の鍵は? 現在、サービスの課題解決に向け、アンケートやインタビューを実施する予定です。顧客のカスタマージャーニーを整理し、どこに改善ポイントがあるのかを明確にすることで、新たな解決策の発見に結びつけたいと考えています。 何が成功の秘訣? 具体的には、以下の取り組みを進める予定です。まず、アンケートやインタビューを通じて顧客ニーズを深掘りし、次にカスタマージャーニーを整理します。さらに、競合他社がどのように顧客と関わり、サービスの提供や改善に取り組んでいるかを調査し、その他、様々なサービスが売れている理由について、現地での観察や実際の体験を通して考察していくつもりです。

マーケティング入門

お客様の本音に気づく瞬間

潜在ニーズを発見できる? 成功するマーケティングにおいて、顧客が抱える潜在的な困りごと―すなわちペインポイントを見出すことは非常に重要です。顧客自身が気付いていない欲求を言語化するためには、購買履歴やサイトの回遊履歴などの定量的な指標と、アンケートやグループインタビューなどによる定性的な指標の両面から分析する必要があります。 自社強みはどこ? ペインポイントが明確になった後は、他社に先んじて自社の強みを活かし、その解消策を講じることが求められます。このため、競合他社と比較して自社の優位性や強みが何であるかを客観的に整理し、その認識をチーム全体で共有することが不可欠です。 定性評価はどうなる? また、自社の顧客についてペインポイントを検討する際には、購買履歴やサイトの回遊データといった数値分析に加えて、顧客アンケートなどを通じた定性的な評価も取り入れる必要があると感じます。 チーム共有は確実? さらに、競合他社に対して自社の強みや優位性を明確にし、客観的な視点で整理した内容をチーム内で共通認識として持つことが、今後の施策を円滑に進める上で重要となると考えます。

データ・アナリティクス入門

挑戦で切り拓く統計の世界

平均値の使い方は? 普段は代表値や単純平均を活用して概ねの状況把握に努めています。加重平均や中央値も業務の中で用いられている印象ですが、幾何平均や標準偏差に関しては、知識としてはあるものの実践する場面が少なく、具体的な事例を通じて使いこなす機会が今後の課題だと感じています。 ばらつきの見える化は? 特にばらつきに関しては、標準偏差の数値だけでは理解しにくいため、ビジュアル化して整理することが重要だと思います。ビジュアルで示すことで、各切り口からトレンドを読み取りやすくなり、自身だけでなく他者にも理解してもらいやすくなると感じます。 幾何平均はどう活かす? また、幾何平均については、実践での理解を深める努力が必要だと感じます。理解が進めば、標準偏差と組み合わせて顧客分析などの業務において有効な手段になると考えています。 分析に挑戦するには? まずは、苦手意識のある分析手法や未経験の手法に挑戦し、自分自身で試してみることが理解への早道だと思います。職業柄、大規模なデータに触れることもあるため、今回学んだ知識を実務にうまく活かしていきたいと考えています。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

データ・アナリティクス入門

仮説検証が切り拓く発見の旅

フレームワークはどう役立つ? 従来、3Cや4Pといったフレームワークは、見せ方や伝え方の整理学として活用されることが多かったです。しかし今週の学習では、仮説設定においてもフレームワークを用いることで、一度幅広く発散しやすいことが分かりました。 どのシーンで学ぶ? この学習を通して、以下のような具体的なシーンで仮説検証の重要性を感じました。 要因分析は何が必要? まず、セールスにおいては失注やペンディングとなった際の要因を分析すること、次に採用活動で辞退が発生した場合、原因を明確にしKGI/KPIを計測しながら軌道修正を行うこと、そして配下メンバーの育成やモチベーション管理について考えることです。 検証の視点は変わる? 既に一部の分野では仮説検証や打ち手の実行に取り組んでいるものの、改めて「0ベースで課題に対する要因を検討する」という姿勢を強化したいと思います。従来は、成功体験や失敗の再発防止といったステレオタイプ的な視点で要因を捉える傾向がありましたが、今後はフレームワークを活用して、より多角的かつ広い視野で検証に取り組む意識を持ちたいと考えています。

「分析 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right