データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

ビジネスフレームワークで広げる視野

フレームワークはどう活かす? 戦略的に考えるためには、単にアイデアを出すだけでなく、ビジネスフレームワークを活用して広い視野で整理していくことの重要性を再認識しました。組織としての判断やアクションを決定する際、関係者が納得しやすくなるためにもフレームワークを用いることが役立ちます。ただし、講義で指摘された通り、全ての関係者が100%納得することは非常に稀であり、フレームワークを用いても意見の相違や議論の発散が生じることは多々あります。重要なのは、考えを整理すること自体が目的にならないようにしつつ、フレームワークを効果的に活用することです。 3C分析は何を示す? 人事業務を担当している私にとって、3C分析は採用アプローチを検討するうえで非常に有用です。また、人事制度の企画や組織・人材開発においては、SWOT分析を活用し、外部要因・内部要因それぞれの強みと弱みを認識した上で、強みを伸ばす施策や弱みを克服する施策を考えることができます。しかし、分析の結果が人事部内で正しいとされても、それが実際に望ましいものかは限りませんので、各事業部と共有して修正を加えながら進めることが求められます。 目的設定は合致してる? 主に教育研修を担当している私は、施策を企画する際にSWOT分析を行っています。研修となると手段、つまりどのプログラムを実施するかに目が行きがちですが、目的を見誤らないためにも分析が重要です。対象者の現状を適切に認識した上で目的を設定し、その目的に沿った研修プログラムを構築していきます。また、組織・人材開発で新たな施策を企画する際には、途中で反対に遭ったり、運用面で困難が生じ頓挫することが多くあります。そのため、バリューチェーン分析によりどのプロセスがネックになっているのかを特定・分析していくことが必要だと感じています。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

データ・アナリティクス入門

仮説が織りなす成長のヒント

仮説って何だろう? ビジネス現場における仮説とは、ある論点に対する仮の答えのことです。仮説は「結論の仮説」と「問題解決の仮説」に大別され、時間軸(過去、現在、未来)によりその内容が変化します。問題解決の仮説は課題に取り組む際の原因究明に用いられ、一方、結論の仮説は新規事業などに対する仮の答えとして位置づけられます。 プロセスの流れは? 問題解決のプロセスは4つのステップで整理できます。まず、Whatで問題が何であり、どの程度の問題かを把握します。次にWhereで問題の所在を明らかにし、Whyで問題が発生している原因を追究します。最後にHowでどのような対策が有効かを検討します。複数の仮説を同時に立て、各々の仮説が網羅性を持つよう確認することで、行動のスピードや精度の向上が期待できます。 仮説の活用法は? 私自身はこれまで、Webサイトの行動履歴や売上、KPIなどのデータ分析において、一つの仮説に頼る傾向がありました。今後は最低3つ以上の仮説を立て、上記の4ステップ(What、Where、Why、How)に沿って分析を深め、効率的な問題解決を目指していきたいと考えています。原因追及だけでなく、具体的な対策案を提案できる分析力の向上が目標です。 具体策は何だろう? そのため、以下の取り組みを徹底していきます。まず、仮説立案を強化し、複数の仮説を積極的に検討します。次に、問題解決の4ステップに沿って、各ステップの内容を明確に記録し、問題の全体像を把握します。また、データ分析に必要な技術や知識の学習を継続し、プログラムや統計学などの講座を受講することでスキルアップを図ります。最後に、チーム内でのコミュニケーションを強化し、情報共有や定期的なレビューを通して、原因追及から対策提案まで一貫したアプローチを実現します。

戦略思考入門

差別化戦略を深めるための新たな視点

情報収集の重要性とは? 講義の設問では、自社と他社の強み・弱みを理解することを前提に、差別化要素を検討していました。この点に関しては、設問中で簡潔に述べるに留まりましたが、日常的に情報を取得し続ける習慣がなければ、差別化の検討に必要な情報の蓄積が難しいと感じます。差別化を検討するにはかなりの事前準備が求められることを痛感しました。 業界を俯瞰する力をどう養う? 加えて、設問のアドバイスを通じて、顧客として食事をする場所の選択肢を考慮する際、焼肉業界だけでなく他の業界にも目を向けることの重要性に気付かされました。自分の回答中、業界内の情報ばかり考えていた反省があり、もっと俯瞰して見る力を養う必要があると感じました。 戦略選択の理由をどう説明する? ポーターの3つの基本戦略は理解しやすく、自社の既存事業が「コストリーダーシップ戦略」と「集中戦略」に位置付けられていると捉えています。現在関わっている新プロジェクトでは「集中戦略」を最優先し、次いで「差別化戦略」を考慮しています。しかし、なぜその戦略を採用しているのか、またその戦略のリスクは何なのかを体系的に説明する準備がまだ不足していると感じました。今後は、これまで採用してきた戦略のリスクにも目を向け、計画を修正していく必要があります。 具体的な差別化の手順は? すぐに取り組むべきこととして、3つの基本戦略に基づいて既存の情報を整理し、戦略のデメリットに対する他社の動向を把握することがあります。また、技術チームとは技術要素における現状の差別化要素の整理を行い、ビジネスチームとはSWOT分析やVRIO分析を実施し、ターゲット顧客から見た現状の差別化要素を整理して、他の代替サービスと比較して優位性を検討することにより、差別化をより具体化していきたいと思っています。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

データ・アナリティクス入門

データ分析でビジネスの未来を予測する方法

分析の目的と手順は? 分析は、比較(増減や時系列の変化、数字の意味)と何を明らかにするかの仮説が重要です。仮説を立てる際には、逆算思考で分析結果の見せ方や投入時間などを考慮します。課題解決のプロセスでは、自己の中でプロセスを明確にし、目的や狙い、コンセプトを先に確立することが大切です。その後、問題を特定し、どこに問題があるのか、なぜその問題が発生したのかを明らかにした上で、どのように解決するかを考えます。 データ分析で課題をどう解決する? ビジネスにおいてデータ分析を行う際には、まず現状と理想のギャップを見つける問題発見力や課題形成力を磨く必要があります。そして、課題解決の仮説を立て、自由な発想と未来からの逆算を用います。次に、客観性を備えたデータ収集を行い、そのデータを加工し、考察と未来への洞察力を磨きます。 新しい取り組みへの挑戦 漠然と総花的な活動に陥りがちで、あれもこれもと欲張ってしまうことが課題です。採用戦略や事業計画策定の際には、採用市場データの分析スキルを評価することが求められます。定性と定量の分析をビジュアル化し、仮説を持ってデータ収集と分析、考察を効率化します。毎年の活動には、新しい取り組みに挑戦することが求められます。最新情報へのアクセスや情報分析から、課題解決策の提案力を高めて引き継ぎます。 ロジックツリーで何が見える? ロジックツリーを用いて、課題(大学・高専との関係強化構築)や採用市場の傾向(少子化・18歳人口の激減、高学歴化・編入進学、高度人材の活躍など)を整理し、それらを明確化、細分化します。これにより、人材獲得のチャンスを検討します。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じて知識をアップデートし、実践能力の向上に努めたいです。

戦略思考入門

差別化に挑む私の学びの旅

ターゲットは明確? 差別化のためには、まずターゲットを明確にし、顧客や市場、競合、自社をしっかりと分析して、強みと弱みを整理することが重要です。強みや弱み、機会、脅威を浮き彫りにしつつ、実現可能性と継続可能性も考慮して施策を検討します。 独自のアイデアは? アイデアを考える際には、ありきたりな発想に飛びつかず、深く考えることが求められます。他業界からの発想を取り込むことで新しい視点が得られるかもしれません。また、集合知の活用は、アイデアの質を高める一助となり、自社の強みを意識しつつ、必要に応じて外部の力も借りることが重要です。ライバルにとらわれず、新しい差別化を追求します。 強みの活用はどう? 自社の強みを最大限に活用するには、VRIO分析が有効です。特に課題として感じるのはO(持続可能性)の部分です。経営資源を効果的に活用し、持続可能な組織化を図ることが求められます。この視点を自分の働き方に取り入れて、業務に反映したいと思います。 現状の整理はどう? 業務においては、現状を的確に把握して分析し、施策の実現可能性、継続可能性、模倣容易性、顧客ターゲットを明確に整理することが重要です。他のプロジェクトとの差別化を図るため、課題を整理し、重複しない施策を立案します。 業務効率はどうですか? また、バックオフィス業務の効率性を追求し、無駄を省いて既存の業務を見直します。業務が属人化しないように、統一したルールを設け、過去と未来の業務の違いを考慮しながら進めていきます。 自分の軸はある? 自分自身が社内でどのようなポジションで進むべきかについて、まずは自分の強みを理解し、VRIO分析を行います。自身の不足を補い、模倣のできない分野を伸ばして、自分独自の仕事の軸を持つことが重要です。

マーケティング入門

顧客の心をつかむ体験価値の秘訣

付加価値はどう生まれる? Week.01からの流れを通して、「付加価値」を付けることの重要性がよく理解できました。単に表面的な内容ではなく、人の根源的な欲求に訴える付加価値を創造することで、より確固たる優位性が得られると感じました。つまり、顧客のニーズを的確に捉え、「何を売るか」を明確にすること、さらには、提供する価値を創造し、市場での強みとなる要素を磨いていく重要性を実感しました。 体験はどう見つける? また、「何を売るか?」「誰に売るか?」といった論理的な分析に加え、顧客が実際にどのような体験を求めているのか、カスタマージャーニーやエスノグラフィーなどを通じてその声を拾い続ける姿勢の大切さも学びました。商品やサービスの魅せ方が、その提供価値を左右することは言うまでもなく、細部にまでこだわり、最後の隅々まで追求することが求められます。 お客様の心はどう感じる? さらに、顧客の心の動きを考えることや、体験を設計する意義を改めて意識しました。たとえ、表面的な「勝ち負け」や「ワクワク感」だけでなく、実際に来店された際のお客様の気持ちや、その後の体験に注目することが、長く印象に残る価値を創り出すと実感しました。そうした体験価値を発見し、くすぐる方法を常に模索していく姿勢が、差別化に欠かせないと感じています。 学びはどのように整理する? 最後に、アウトプットに入る前に、自分自身で学びの要点を整理し、確認するルーティンの重要性にも気づかされました。時間や予算に追われる中でも、何となく流されるのではなく、学びをフレームワークにまとめるなどして、論理的かつ計画的に反映できる仕組みを作りたいと思いました。これからも、今回の学びを活かし、顧客が本当に価値を感じる体験の創出に努めていきたいと考えています。

クリティカルシンキング入門

データ分析で得た新たな視点を活かす

テクニックって何? 最初に、テクニック面で以下の点を再確認しました。まず、「何となく考え始める」のではなく、「イシューは何か?」を明確にすることからスタートします。そして、そのイシューが正しいかを客観的に考え、特定したイシューを分析する際には「ひと手間かけて」データを加工することが大切です。さらに、データの分解が正しいかどうか、一度立ち止まって考える姿勢を持ち、相手に伝わるように丁寧にスライドを作成することが重要です。 心はどう向き合う? 次に、気持ちの面でも以下のことが身に染みました。人や書籍から知識を得るだけではなく、自分の頭で考えることをしなければ、自分の力にはなりません。しかし、自分勝手に考えるだけで人や書籍から学ばなければ、独断に陥ってしまいます。これからも「自分自身で考える」ことを止めてはいけないと強く感じています。 タスクの理由は? ルーチンのタスクにおいても、なぜそれを実施しているのか、実施の必要があるのかを改めて考え直しながら業務に取り組むべきだと感じました。そのため、早速月曜日から思考を止めることなく行動していきたいです。また、企画を立案する際には、イシューの特定から相手に伝わる資料の作成・提案までのすべてのフローで今回学んだことが実施できているかを確認しつつ進めていきたいと考えています。 具体的には、ミーティング参加時にはイシューがぶれていないかを常に確認します。そして、思考を整理する際にはMECEやピラミッドストラクチャーなどのフレームワークを活用し、思いつきで行動するのではなく、一度立ち止まる癖をつけるようにしたいです。また、資料作成時には論理的思考をベースに下準備を行い、データを分析し、相手に伝わるかという視点に重きを置く習慣をつけることが必要だと考えています。

「分析 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right