データ・アナリティクス入門

実践が教える仮説検証の極意

検証手法は有効? 問題原因を明らかにし、仮説検証の手法を学びました。A/Bテストを活用して施策の比較を行い、検証条件を可能な限り統一することの重要性を実感しました。例えば、AM・PMや平日・休日といった環境の違いは、検証対象以外の要素が判断に影響を及ぼす可能性があるため、広告などではランダム表示を取り入れることで正確な評価ができると考えています。 現場実践と課題は? 業務の現場では、店舗出店など莫大な費用と時間を要するケースが多く、テスト環境の確保が難しいのが現状です。しかし、勤務状況や労務上の課題に関しては、実践の機会が得やすいため、身近な課題に対して継続的な取り組みを重ね、自身の中でフレームワークを構築していくことが重要だと思いました。 日々の計画はどう? また、仕事に限らず、収入と出費などの身近なテーマでも問題意識を持つことが大切です。まだ十分にMECEの視点で物事を分析できていないため、さまざまなケースにおける要素分析を行い、知識をストックしておく必要があると感じました。さらに、全体の時間軸を意識して日々の業務計画に落とし込むことで、突発的な対応を極力減らしていきたいと考えています。

マーケティング入門

マーケティングで顧客満足を追求する旅

マーケティングの本質とは? マーケティングについて考えると、以前よりも広い意味を持つように感じていますが、本質的な顧客志向や顧客満足という点は、時代が変わっても変わらないと捉えています。マーケティングを考える際には、常にこれを念頭に置いていきたいです。 顧客満足を追求するには? 私の勤める会社も、昔から顧客を大切にすることを最重要視しています。ただし、接客だけでなく、より本質的なお客様の満足やインサイトを意識し、提案の際に活かしていくことが求められています。そのためには、素晴らしい商品を作ることよりも、顧客が本当に求めている商品やサービスを提供できるように、分析力を身につけ、高い視点から提案できるようになっていく必要があります。 定量化できない満足度への挑戦 顧客理解を深めるための方法やその数値化を手法として習得することに努めるつもりです。また、定量化が難しいイメージや口コミの分野で、納得感の持てる提案を行うためには、常に批判的思考を意識するようにしたいです。そのため、他者に提案資料の確認をお願いしたり、フィードバックや顧客の声を積極的に聞くこと、確認する習慣をつけることが大切だと考えています。

データ・アナリティクス入門

ロジックツリーで解明する挑戦

問題解決の第一歩は? 問題解決のプロセスは、「問題の明確化、問題の特定、分析、立案」の4つのステップで進めることが基本です。まず、あるべき姿と現状とのギャップを整理し、定量的な指標で表現することで、問題の本質を明らかにします。 ロジックツリーの意味は? 次に、ロジックツリーを用いて問題を層別分解と変数分解の視点から特定します。この手法は、抜け漏れなく全体を捉えるために有効であり、MECEの考え方を取り入れることで、効率的な分析が可能になります。 データ分析の見直しは? 実際の業務では、ある営業活動の最適化に向けた分析で、手元のデータをもとに検証を試みたものの、結論に至る前に、まずロジックツリーによる要素の分解と、分析の切り口についての再検討が必要だと感じました。また、参加しているプロジェクト全体のパフォーマンス改善にも、この手法を活用できると考えております。 改善策の判断は? ただし、分析においては良い切り口と悪い切り口の判断が難しいという現実も感じました。今後は、これらの手法を実践しながら、より効果的な分析の切り口を見極め、改善策を立案していくことが重要だと実感しています。

データ・アナリティクス入門

仮説の力で未来を切り拓く

仮説の役割は? 仮説とは、ある論点に対する仮の答えであり、目的に応じて「結論の仮説」と「問題解決の仮説」に分類されます。これらは、過去、現在、未来という時間軸によってその内容が変化するため、状況に応じた検討が求められます。仮説を持つことで、個々の仕事における検証能力が高まり、説得力が増すとともにビジネスのスピードや行動の精度も向上します。 会員減少の理由は? たとえば、コミュニティの会員数が減少傾向にある現象について検討する際、フレームワークに沿った分析を行うことで、何が問題なのか、どこに課題があるのか、なぜその問題が生じているのか、さらにはどのように対応すべきかといった具体的な課題が明確になり、改善策も見えてくる可能性があります。このような一連のプロセスは、非常に難しい課題ですが、正確な状況把握と議論の進展に寄与します。 活用法はどう変わる? これまで、仮説を立て検証する際に、フレームワークを十分に活用せず、目の前の事象に対して漠然と対処していた部分がありました。今後は、4Pや3Cなどのフレームワークを効果的に用い、より具体的な仮説を立て検証することが求められると感じています。

データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

クリティカルシンキング入門

イシュー設定の重要性と技術活用法の探求

イシュー設定の重要性とは? イシューを設定することの重要さと難しさを実感しました。どのようなシチュエーションでイシューを設定するかによって、答えが大きく変わることを学びました。例えば、売上を上げるためのイシューにおいて、顧客の信頼を失っている時には価格を上げる決断は難しいですが、信頼を得ている時には価格を上げる選択も正しいと考えられます。状況をしっかりと分析し、適切にイシューを設定することが重要だと感じました。 技術の価値はどう測定する? 私たちの企業において技術の探索を行う際、技術の価値をピラミッドストラクチャーで分解し、その活用法を探ります。さらに、業界動向などの情報を収集し、以前は不採用としたイシューが現在適切であるかを再検討し、業務タスクに反映させます。また、上長に相談し、論理的な考えができているかフィードバックをもらうよう心がけています。 業務の方向性はどう深める? 日々の業務をピラミッドストラクチャーで分解し、その変化に応じてイシューを見直すことから始めています。上長とこのピラミッドストラクチャーを共有し、議論を通じて業務の方向性を組織全体で深めるよう取り組んでいます。

クリティカルシンキング入門

データ分解で見える!思考の旅路

どうやって切り分ける? 物事を分割して考える際、結果が見えないこともありますが、それ自体が「何もわからない」という結果を示しているため、意義はあります。その上で、次の切り口を探ることが重要です。初めの段階では大きく切り分けていく方が良いですが、最初から最適な切り口を見つけることは難しいでしょう。そのため、見つけた切り口からさらに広い視点の切り口を探る往復作業が効果的です。 情報はどう加工する? 情報はまず収集し、それを目的に応じて変形させることが重要です。そして、それに基づき次に進むべき方向を考えます。例えば、自社と他社の比較や、今年度の新人の離職や休職の状況を把握し、施策についての成果を確認します。研修後の全体的な理解度や企画時の要因分析、アンケートの結果整理なども同様に重要なプロセスです。 研修後はどう比較する? 特に今年度の新人の離職・休職については、理由別にデータを収集し、昨年度と比べて施策の効果を評価します。また、研修後の理解度把握では、各個人の研修中のデータを整理し、現場配属後の成果と結びつけ、成果が出ている人とそうでない人との違いを比較することが求められます。

データ・アナリティクス入門

思考の質を高めるMECEとMICE活用法

MECEの考え方とは? MECEの考え方は、切り口を重複させずに漏れなく設定することが重要です。どのような切り口が最適かを判断するためには、高い感度が求められます。これに関しては、分析の経験を積むことや、多方面からの意見を聞くことも必要と感じています。 ロジックツリーの活用法 ロジックツリーについては、論理的思考を活用することで、適切な判断ができるようになります。 MICEの活用には何が必要? MICEの考え方は、実務に役立ちそうで、特に顧客分析など日常的な業務での活用チャンスが多いです。「重複なく漏れなく」を実現することはその通りと感じつつも、切り口の設定によって重複を避けることが難しい場合もあり、その点をどのように克服するかが課題だと考えています。 BI分析へのMICEの導入 業務で作成しているBI分析において、MICEの軸を取り入れることにしました。切り口については様々な角度から実施し、どの分析が効果的であるかを検討します。また、ロジックツリーについては、既にパイプライン分析で似たことを行っていますが、改めてロジックツリーを用いた分析も進めてみようと思います。

デザイン思考入門

ワクワクが生む本当の学び

授業モチベ低下の理由は? 現在の業務では、学生の学業に対するモチベーションの低さが大きな課題となっています。授業アンケートなどの定量分析だけでは、学生の本音を把握するのは難しいため、フランクな環境で直接インタビューを行ったり、授業課題に取り組む姿を観察するなど、定性分析の手法を取り入れることが効果的ではないかと感じました。 内発性向上は可能? 実際に、学業に一生懸命取り組む数名の学生に「なぜそれほど頑張れるのか」と尋ねたところ、ほとんどの場合「単位を取りたいから」や「良い成績を取りたいから」といった外発的動機づけによる回答が返ってきました。これは、彼らが自らの内発的な動機、つまり学業に対するワクワク感の醸成ができていないことを示しており、強制ではなく自主的に学びを楽しむ環境作りが必要であると改めて実感しました。 課題の本質はなんだ? また、「解決すべき本質的な課題を明確にすること」ができれば、課題解決の半ばは達成したと言えるでしょう。しかし、インタビューや観察から本質的な課題を的確に抽出するのは容易ではなく、何度も試行錯誤を繰り返しながら進めていく必要があると感じています。

アカウンティング入門

構成要素で読み解く利益のヒミツ

構成要素ってどう考える? 構成要素を考えるという視点が特に印象に残りました。高い売上高の要因を探る際、まず売上を単価と客数に分けて整理し、それぞれを分析することで全体を正確に把握できるという点が学びとして響きました。 利益向上はどう実現? また、利益向上のためには売上を伸ばすか、コストを下げるかの二つの選択肢があるものの、単純にコストを削減するだけではなく、その結果として売上に悪影響が出ないかを注意深く検証する必要があるという考え方にも納得しました。 実務にどう繋げる? 直接業務に活かすのは難しい部分もありますが、分析の際に構成要素に分けて考える姿勢や、影響度合いを踏まえた意思決定の重要性は、日常業務においても間接的に活用できる貴重な学びだと感じました。 他業界の意見は? 今回の設問では、コーヒー豆の単価が下がることによる影響や、なぜ売上が順調であるのかを考えることで、利益向上のために売上を伸ばす方法や、削減すべきコスト、必要な情報について再考する良い機会になりました。また、他業種・他業界の方々がどのような視点を持っているのかを伺ってみたいという期待も浮かびました。

データ・アナリティクス入門

仮説×データで切り拓く未来

どうして条件を揃える? 今回の実践では、普段の業務で使っているデータ分析のフレームワークと非常に近い感覚を得られました。時期要因や市場状況、法令改定など、すべての条件を完全に統一することは難しいですが、できるだけ条件を揃えた上でA/Bテストを行う大切さを再確認しました。 仮説はどう検証する? また、仮説を立てる際には、一人の頭脳や限られた環境だけでは限界があると感じました。時間を確保し、場合によっては他者の意見や視点を取り入れながら、しっかりと仮説を検討し、データの切り口を考える必要性を実感しました。 採用分析のコツは? 顧客の採用データ分析については、応募から入社までの全てのプロセス(場合によっては書類選考の評価も含む)を明確に線引きし、どの段階で大きな離脱が起きているのかを特定できるよう、可視化の土台を整える重要性を学びました。 改善の基準は何? さらに、改善施策を検討する際には、どの指標を、どのように改善するための施策なのか、また、いつのスコアを基準にするのかを明確にすることが必要です。振り返りの際には、必ず条件を揃えて比較することが求められると感じました。

アカウンティング入門

難解を超えた!財務三表の真実

経営者の意見はどう? これまで、財務三表は経営者層や上位管理者層が主に理解し運用しているものという印象がありました。しかし、今回の講義では「難しい」という側面だけでなく、「簡単である」という説明もあり、両面からのアプローチが納得感を呼びました。 指標の意味は何? 講義では、財務三表が歴史的に経営状況を簡単に説明するためにブラッシュアップされてきたという点が強調されました。そのため、単なる難解な指標ではなく、経営状況を見える化する有効なフレームワークであると実感できました。 投資と改善の鍵は? 今後、来年度の事業計画を策定する際には、所属する事業部の施策検討において、財務三表から投資すべきポイントや改善が必要な業務を明確にし、論理的な提案を行うことが重要だと感じています。また、競合他社の経営状況を把握する際にも、同様の分析が一助となるでしょう。 数字の信頼性はどう? さらに、講義を通じて、財務三表の数字が正当であるか、あるいは不正に操作されている可能性についても考察する機会となり、数字の信頼性をどのように見抜くかについて学びの意欲が高まりました。

「分析 × 難しい」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right