データ・アナリティクス入門

比較で導く納得のヒント

比較で何が見える? 「分析の基本は比較」に始まり、「分析の目的を明確にし」「適切な比較対象を選ぶ」ことの重要性が強調されています。数字だけを見ると本来の意味を見落としがちですが、比較によって初めて本質が見えてくるのだと実感しました。分析方法や比較対象は、目的や結果の活用方法によって変わるため、状況に応じた工夫が求められます。 リサーチで何を学ぶ? リサーチ設計においては、マーケティング課題、調査課題、調査目的を明確に設定した上で進めることが多く、今回の講座を通じてその必要性を再認識しました。従来、数値や結果の解釈を感覚に頼ってしまう傾向があり、分析に苦手意識を持っていましたが、今回の学びはその感覚だけに頼らない視点を提供してくれました。特に、売上管理で昨対比を重視する際も、比較することで全体像が見えてくるという考え方は、納得感をもたらす貴重なヒントとなりました。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

データ・アナリティクス入門

比較が切り拓く使いこなしの未来

比較って何が重要? 分析というと、難しい数字を使った調査と思われがちですが、本質は「比較」であると学びました。比較は、目の前にあるもの同士だけでなく、目的に応じて見えていない要素も想像して行う場合があります。 活用状況はどうする? プロダクトにおける顧客の活用状況では、十分に使いこなせていないケースの課題を抽出し、もししっかり活用できた場合のシミュレーションを定量的な数値で示すことが重要です。こうして、利用促進のきっかけを提供すると同時に、プロダクト自体の改善点にも繋げられると実感しました。 目的はどう定める? また、比較対象を決める際には、分析の目的と照らし合わせながら選定することの大切さを学びました。私自身、問題が発生した時に手段に頼りがちな傾向がありますが、今後は目的を明確に定義し、しっかりと把握する意識を一層高めていきたいと思います。

クリティカルシンキング入門

問いから広がる学びの扉

問いの本質は何? 今週のライブ授業では、クリティカルシンキングにおいて「問い」がいかに重要であるかを学び、最後のまとめを行いました。特に、あるスポーツリーグの例では、いきなり数値の扱いに取り組むのではなく、まずは問いを明確にしてからデータ分析を進めることの大切さを実感しました。これまでは数値から意味を見出そうと必死になっていたのですが、まず問いを整理してから分析することで、より深い洞察と説明のしやすさが得られると感じました。 仕事の問いはどう? また、仕事においても、何かを考え始める際は最初にイシューを明確にすることが重要だと学びました。具体的には、まず自分が解決すべき問いを立て、その問いに基づいて今何をすべきか検討します。さらに、この問いを周囲と共有し、自分の考えに対してフィードバックを得ることで、より良いアイデアにブラッシュアップできると感じています。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

データ・アナリティクス入門

平均の裏側が見える瞬間

平均計算の選び方は? これまで「平均」といえば、すべてを足して割る単純平均を想像していました。しかし、データの重要度が異なる場合には加重平均、成長率や比率を扱う際には幾何平均を使うなど、状況に応じた適切な平均値の選択が必要であると知り、目から鱗が落ちる思いでした。 散らばりの重要性は? また、データの中心を示す代表値だけでなく、その中心からどれくらい離れているかを示す散らばり(標準偏差)の重要性も学びました。これにより、数値情報をより深く理解する視点が広がりました。 広告指標の活用は? さらに、web広告の運用効率などをより詳細に分析し、目的に応じた指標を活用してデータから正確な情報を読み取るスキルを伸ばしていきたいと考えています。まずは、分散などの指標を視覚化してみることで、思わぬ面白い発見が得られるのではないかと期待しています。

データ・アナリティクス入門

数値で見抜く!漏れゼロの採用戦略

どの段階で離脱? ファネル分析を通して、どの段階で対象が離脱しているかを可視化できるため、問題点を明確に捉えることができると感じました。ただ単に結果を眺めるのではなく、途中段階で状況を確認し、各プロセスを適切に設定することが重要だと思います。 採用選定のポイントは? また、採用活動においては、採用エージェントや採用プラットフォームの選定に活用できる点が印象的でした。まず、人材会社のユーザー数、直近3カ月以内のアクティブ数、採用職種の登録人数、採用希望年代など、段階的に絞り込むことで、対象となる母数の大きさを把握する手法が有効だと感じました。 母数比較で選定は? さらに、それぞれの採用エージェントやプラットフォームを運営する企業ごとに同様の絞り込みを行い、母数を比較することで、採用活動に最も適した人材会社を選択できると実感しました。

クリティカルシンキング入門

数字に惑わされぬ視点の磨き方

なぜ数値に固執する? 数字を分析する際、自分の仮説を証明しようと特定の数値にこだわってしまい、少しの分析で思考が止まってしまう癖に気づきました。本来、数字は客観的なデータとして取り扱い、そこから見えてくる問題の本質をファクトとして捉え、その後に物事を考えるステップを踏むことが重要だと感じています。 採用で見落とすポイントは? 採用業務においては、応募数、書類選考、面接通過、内定承諾といった時系列データを元に、過去の数値と比較しながら問題点や成功点を見極める必要があります。しかし、これらの数値だけでは、表面上は問題がなさそうに見える場合でも、実際には採用候補者の属性や自社の面接体制など、より詳細な要素に目を向ける必要があると痛感しました。こうした観点で情報を整理していくことで、よりクリティカルな問題解決に結びつく可能性が高まると考えています。

データ・アナリティクス入門

見せ方で広がる学びの世界

数値の見せ方はどう? データの加工によって結果から導かれる解釈が変わる点に非常に興味を持ちました。たとえば、平均や中央値、グラフの種類といった数値の見せ方によって、分析結果の印象が大きく変わることを実感しています。一方で、これらは作成者の意図が反映されている可能性もあるため、単一の数値だけでなく、複数のデータを総合して考察する必要があると学びました。加えて、加重平均、幾何平均、標準偏差など、値の求め方の違いを明確に理解し、使いこなせるようになりたいと感じました。 アラートの傾向はどう? また、これまでに発生したアラートの種類や頻度をまとめ、発生パターンを分析・予測できるのではないかとも考えています。どのタイミングでアラートが発生するかといった傾向を把握することで、対策の立案がしやすくなり、結果としてアラートの抑止につながると期待できます。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

数値が拓く学びの未来

数字の多様性を考える? 数字を見る際には、単純な平均値だけではなく、データのばらつきにも注目することが重要です。代表値には、加重平均や中央値、場合によっては調和平均なども含まれることを意識し、ひとつの数字だけに依存しない視点が求められます。また、データをビジュアル化することで、各データ間の関係性を直感的に把握できる点も大きな利点です。 データ分布の見直し? 大量のデータを扱う場合は、まず仮説を立てた上で分析を進めることが望まれます。これまで平均値を基に議論が行われることが多かったものの、データ全体の分布を視覚的に確認することで、ばらつきから新たな視点や示唆を得ることができます。たとえば、定量調査の結果について、単に平均的な傾向を論じるのではなく、その分布状況を把握し、どのような要因がばらつきを生み出しているのかを再検討することが大切です。

データ・アナリティクス入門

比較が切り拓く説得力

何を比較する? 「分析の本質は比較である」という考え方を基に、分析を行う際には何を比較の対象とするのかを明確にすることが大切だと感じました。また、比較対象が適切かどうか、つまり条件ができるだけ揃っているかを検討することで、説明する相手にも説得力を持って納得してもらえると考えました。 数値変動の理由は? 商品の活用数値に大幅な変動があった際は、原因分析が必要です。その際、単に昨年度同時期の数値を比較するだけでなく、同期間の環境―追い風か向かい風か―を把握することで、より説得力のある分析が可能になると思います。これらの情報がすぐに確認できるよう、ファクト元の整備も重要だと感じました。 業務経験をどう活かす? 特に疑問点はありませんでした。今後は、皆さんの業務経験を参考にしながら、さらに多角的な観点で分析を深めていければと思います。
AIコーチング導線バナー

「分析 × 数値」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right