クリティカルシンキング入門

多角的視点で売上アップを実感!

問題解決のための分析方法は? 状況を正しく把握して行動を判断するためには、問題をより細かく分解し、複数の視点からデータを収集し整理することが重要であると学びました。データをまとめ、仮説を立てた後は、さらに新しいデータを集めてその仮説の真偽を再検討します。このプロセスを通じて、状況を正確に捉えることができると理解しました。 自店舗の分析をどう深める? 現在、各部門や各商品の販売数、実利益、前年対比、予算、目標設定を行っていますが、これを自店舗のみならず、エリア内の他店舗のトレンドや市場トレンドと照らし合わせています。これまでもこのような分析を無意識に行っていましたが、今回の学びを通じて、それが複数の視点による分解であったことに気付きました。 他店舗の成功事例をどう活用する? エリア内の他店舗にも連絡を取り、自店舗の特徴を聞き出しています。特定の部門や商品の売上が高い店舗の特徴や取り組みをヒアリングし、それを自店舗にフィードバックすることで売上向上を図っています。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

クリティカルシンキング入門

課題解決の第一歩は全体像の把握

全体像を捉える重要性は? まずは全体像を捉えることが重要です。様々な視点から分解することで解像度が上がり、具体的な問題や、これまで気付かなかった問題にも気付けるようになります。このため、入ってくる情報に対して適切なフィルターを掛けて受信することが求められます。 問題解決のために何を心がける? 直面する問題に対して、まず全体像を知ることを心掛けたいと思います。その後、どのプロセスに課題や問題があるのかを分析していきます。この手法は、業務フローで全体を見える化し、どの工程でエラーが起きているのかを確認するのに適しています。頭の中でも自然にそれを描き、実践していきたいと考えています。 効率化のためにはどんな工夫が必要? 上記の通り、頭の中で全体像を想い描けるように、常に心がけることが重要です。その癖をつけるために、まずは紙などに書き出して頭の中を整理するように取り組んでみたいと思います。様々な業務の効率化を追求するために、MECEを活用していきたいと考えています。

データ・アナリティクス入門

データ分析の未来を対話で掘り下げる学び

データ分析の重要性を再考するには? 講座全体の学びを振り返ることで、データを分析してビジネスに活かすとはどういうことかを再考する良い機会となりました。基礎的な内容を再び学ぶことで、受講者がどの部分に関心を持っているのかを把握でき、自分の講座を作る際の参考になりました。 対話セッションのメリットとは? データ分析の講座を設計する際、受講者の理解を深めるための施策を考えました。その結果、受講者同士が対話を通じて学びを深めることが有用だと感じました。この対話セッションはどんなコンテンツにも適用できるため、今後自分が企画する講座にも組み入れたいと考えています。 持続的な知識吸収をどう行う? データ分析の知識を吸収し続けることは、今後も継続して取り組むべき課題です。自分の関わる案件でも、ビジネスにどうデータを活用できるかを常に検討していきます。また、受講者同士の対話型セッションを設計し、どのような項目でどのように深めていくかの具体的な内容を決める作業も続けていきます。

データ・アナリティクス入門

データと仮説で切り拓く未来

原因は何でしょう? 問題を解決するためには、原因をプロセスごとに分解して明らかにする方法が効果的だと実感しました。広告にかかる費用と表示回数だけで費用対効果を計算しても、課題解決には至りません。しかし、クリック数や申し込み数といったデータを加えて各割合を算出することで、具体的な解決策のヒントを得ることができました。 A/Bテストはどう? また、業務では主に定量分析や可視化を中心に行っているため、これまで触れる機会の少なかったwebマーケティングで活用されるA/Bテストについて学べたことは非常に新鮮でした。 仮説、どう作る? さらに、日々の業務でデータ分析や問題解決を行う際、どうしても過去の経験や周囲の意見に基づくストーリーに頼ってしまい、データ活用が十分にできていなかったことに気付きました。今後は、「What」「Where」「Why」「How」の各ステップや様々なフレームワークを活用した仮説の立案を取り入れ、より効果的な解決策を模索していきたいと思います。

データ・アナリティクス入門

比較と検証で切り拓く未来

分析の見極めポイントは? Week1を振り返って、「分析は比較なり」という言葉が強く印象に残りました。正確な分析を行うために守るべき要点を改めて認識するとともに、仮説と検証を繰り返すことの重要さを実感しました。 業務での分析とは? 実際の業務シーンでは、以下のような場面でデータ分析の手法を活用しています。病院のデジタル推進におけるデータ分析、サーバ性能やトラブル発生時の問題解決、新サービス導入時のサーバ負荷試験に関する見解、また、LINEや無呼吸ラボ、近隣検索、PCPへのファネル分析、アクセス数やページビューの分析など、さまざまな事例に取り組んでいます。 分析習慣の秘訣は? 日々の業務においては、勘や経験則だけに頼ることなく、データ分析に基づいた意思決定を行う習慣を身につけることが重要だと感じています。問題が発生した際には、What、Where、Why、Howの視点で現状を整理し、的確な対策を講じるために、仮説と検証を繰り返す姿勢を大切にしていきたいです。

戦略思考入門

VUCA時代の新たな地図

外部環境への気づきは? 6週間の講座を通じて、これまで自分が所属していた業界のみに注目していたことに気づき、外部環境にも目を向ける重要性を学びました。マンネリ化した視点から脱却し、広い視野で世の中を俯瞰することで、変化の激しい時代に柔軟に対応する必要性を実感しました。 未来をどう描く? 特に、VUCA時代においては常に変化に敏感であるべきであり、不確実性が高い環境下では、複数の未来を見据えたシナリオプランニングが有用であると感じました。また、マクロ環境の変化を整理するためのPEST分析の活用も、事業環境の理解に大いに役立つと考えています。 実践で何を活かす? 今後は、マーケティングをはじめとする業務において、従来の業界知識に加えて新たな環境への情報整理に、これらのフレームワークを積極的に活用していこうと思います。また、表面的な対応にとどまらず、状況を中長期的な視点で分析し、根拠に基づいた判断を行いながら、チームマネジメントにも活かしていく所存です。

戦略思考入門

戦略思考で未来を切り拓く

戦略思考ってなぜ大事? この6週間で、戦略的思考の重要性や難しさ、そして楽しさを学びました。まずはゴールを明確に定め、そのゴール達成のために何をすべきか、また何を避けるべきかを整理することの意義に気づかされました。さらに、戦略立案に役立つさまざまなフレームワークが存在することを実感し、有用な知識を得ることができました。 現地法人でどう活かす? 現地法人の営業責任者としての役割を担う中で、経営戦略や営業戦略の策定にあたり、今回学んだことを積極的に活用していきたいと考えています。業界が急速に変化する中で、常に外部環境をアップデートし、臨機応変に対応できる組織作りが求められています。 外部環境は更新できる? そこで、四半期ごとに3C分析やPEST分析を用いて外部環境を見直し、戦略の現状を把握しようと考えています。得られた分析結果から、自社のリソースや能力の不足している部分を補うために、担当部門や上司に適切に報告し、会社全体の改善へと繋げていく所存です。

データ・アナリティクス入門

効果的な分析方法を学び成功へ一歩前進

効果的な分析手法を学ぶには? 分析を行う際に、ただ漠然と進めるのではなく、ステップを考え、ロジックツリーを用いることやMECEを意識した切り分け方を学んだおかげで、より効果的な分析ができるようになった。これからは慣れに頼らず、きちんと目標を持って分析を行っていきたい。 売上向上への試行錯誤とは? 売上が伸び悩む中で様々な試行錯誤を続けているが、前回学んだ「目的」「仮説」「数字の性質」に加えて、今回の「ステップ思考」「ロジックツリーでの展開」「MECEを意識した切り分け」を活用し、過去の数値分析を再度行いたいと思う。 新規施策提案のためには? 新規施策を提案する際には、目標となる部分と仮説、そしてそれがステップ思考になっているか確認し、ロジックツリーを実際に作成して客観性があるかどうかを見極める。また、MECEを意識することで、意味のある分析・評価に繋がっているかどうかを自問自答していきたい。そして、その提案をメンバーや上層部に向けて発信していく予定だ。

戦略思考入門

課題解決を導くフレームワーク活用術

なぜ課題の抽出が重要なのか? 課題や論点の抽出において、もれなく重複なく進めることと、解決策を模索することの重要性が強調されています。この過程では、ステークホルダーと足並みをそろえて議論を深めるために、フレームワークの活用が有益です。ただし、各ケースに応じて最適なフレームワークを選択する必要があるため、事前の認識合わせが不可欠です。 フレームワーク活用の意義とは? 自社の営業戦略や施策実行の判断に際しても、フレームワークに基づくディスカッションとアウトプットの作成が、論点の漏れを防ぐ役割を果たします。また、このプロセスを通じて自社商品の特徴を再評価し、環境分析を実施します。 効果的な会議準備方法は? 普段の情報共有の場とは異なる長めの時間を設けて課題整理のディスカッションを行うことが提案されています。その前準備として適切なフレームワークを決定し、可能な範囲でアウトプットを準備することが求められます。これは、会議を効果的に進めるための重要なステップです。

データ・アナリティクス入門

MECEの呪縛から解放される方法

データ収集と分析の重要性は? 日頃からデータ収集、分析、仮説設定、実行サイクルのスピード感を大切にしていました。しかし、「MECEを意識し過ぎず、時間をかけすぎないこと」を講義で聞いて、今後の業務においてもこの点を意識し、実践していきたいと考えました。 効率的な仮説設定と実行方法は? 特に、MECEや分析そのものに過度な労力を費やすのではなく、分析結果を基にした仮説設定、そして何より迅速な解決策の実行と行動に焦点を当てたいと思います。このようにして得られた新たなデータの収集→分析→仮説設定→実行のサイクルをより早く回していくことに注力したいと考えています。 MECE活用術と業務への応用法は? さらに、MECEについては、大項目から小項目へとプロセスを意識して分析項目を洗い出す習慣を、明日から日々の業務の中で身につけていきたいと思います。また、分析にかける時間を事前に設定し、それをもとに効率的に進めていくことも、明日から実施していきたいと考えています。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right