データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

クリティカルシンキング入門

相対値とMECEで磨く文章術

データ加工の新発見は? データそのものを見るだけでは新たな発見はあまり得られず、グラフ化や絶対値だけでなく相対値(比率)の計算といった加工の重要性を強く感じました。そのため、常に①WHEN、②WHO、③HOWという切り口を意識し、相手の立場からも分析することが不可欠だと考えています。また、MECEのアプローチとして階層別、変数別、プロセス別に分けることや、「ダブりなくもれなく」の原則を徹底的に実践することを心掛けています。 文章構築のコツは? 仕事では数値を扱うよりも文章作成の機会が多いため、MECEの考え方はデータ加工だけでなく文章の構築にも非常に役立っています。特に役員向けの挨拶原稿を作成する際には、ロジックツリーに分解して整理し、「ダブりなくもれなく」の要素を取り入れないと、何を伝えたいのか分かりにくい文章になってしまいます。今後もこの手法を積極的に活用していきたいと感じました。

データ・アナリティクス入門

不安から自信へ変わる実践法

比較と伝え方は? データ分析においては、常に比較する姿勢を忘れず、大切なポイントだと実感しています。また、ビジュアル化する際には、これまで自身が慣れ親しんできたグラフだけでなく、伝えたい情報に最も適した表現方法を選ぶことを意識しています。 経験はどう活かす? 業務での分析経験があるため、実際の活用イメージは湧きやすいです。これまでは自己流で学んでいたため、考え方や手法に不安を感じることもありましたが、体系的に学ぶことで自信を持って活用できるようになりました。 仮説と検証は? 具体的には、まず仮説を立て、その後、比較対象を検討してバイアスを排除しつつデータを見るよう努めています。また、分析結果に関しては、担当者間でできる限り議論を重ね、さまざまな視点から検証することを心がけています。さらに、ビジュアル化の際は、誰が見ても正しく、わかりやすく伝えることを意識しています。

データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

データ・アナリティクス入門

フレームワークで開く学びの扉

仮説はどう生まれる? まずは、3Cや4Pといったフレームワークを仮説の軸として活用することで、仮説をスムーズに構築できます。この方法により、偏った仮説や考慮漏れを防ぎ、網羅的かつ精度の高い分析が行えると感じています。 私の仮説偏りはなぜ? また、私自身、問題解決のための仮説設定が思いつきやすいものに偏りがちであることを実感しています。そこで、今後はまず3Cや4Pなどの軸に基づいて仮説を網羅的に洗い出す手順に見直すことにしました。これにより、より体系的かつ客観的なアプローチが可能になり、問題解決の効率も向上すると考えています。 実践はどう進む? 具体的には、最初に3Cや4Pを活用して課題に対する多角的な視点を整理し、次に各軸に沿って仮説をリストアップ、優先順位を付けながら検証を進めます。最後に、検証結果をフィードバックし、再度仮説を見直していくプロセスを実践していく予定です。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

データ・アナリティクス入門

賃貸営業に役立つロジカル思考の実践

ステップ思考で目標達成? これまで漠然と進めていたことについて、「What」「Where」「Why」「How」というステップで考えることで、目標に早く到達できると感じました。また、ロジックツリーを用いて、もれなく重複なく(MECE)の分析方法を学びました。しかし、頭で理解するだけでなく、やはり実践を通じた訓練が必要だとも感じました。 業務データ活用の重要性 私は賃貸住宅の入居者募集業務を担当しています。物件データや毎月の入居者・退去者のデータをもとに、どのような傾向があるのかを見極め、売上や利益を伸ばすための営業戦略に応用できそうです。 視覚化で理論を実践? さらに、ロジックツリーやMECEについても、理論の理解だけでなく、実際に手を動かして試してみることが重要だと感じました。日常業務の様々な場面で、可能な限り図や文字を用いて視覚化し、訓練して習得していきたいと思います。

データ・アナリティクス入門

4Pの視点で切り開く明日の戦略

なぜ4Pで仮説を立てるの? 4Pの視点から仮説を立てる方法について、これまで十分に実践できていなかったため、改めて基本に立ち返り内容を確認しながら取り組みました。その結果、4Pの視点が非常にやりやすいことを実感し、今後は意識的に活用していきたいと感じました。 なぜ多角的に見るの? また、コンサルティングの現場では、契約状況の因果関係を把握する際に4Pの視点で多角的に分析する必要性を改めて認識しました。リサーチャー時代から苦手としていたこの分野ですが、今後は意識して幅広い視野を持ちながら仮説を構築していきたいと思います。 どうして数値を読むの? さらに、数値データを分析する際は、単に事実を確認するだけでなく、背後にある事象を踏まえて仮説を立て、物事の判断につなげることが重要だと実感しました。3Cや4Pの視点を常に意識し、分析を通じた課題解決の思考力を養っていきたいです。

データ・アナリティクス入門

5視点で探る仮説と分析の力

分析はどう始まる? 分析は比較から始まるという考え方と、問い・仮説設定・検証というサイクルが実務に合致する点に強く共感しました。また、インパクト、ギャップ、トレンド、ばらつき、パターンの5つの視点をすべて捉えることで、初めて価値ある情報が得られるという認識が深まりました。 変化と課題は何? 先週と大きなテーマの変化はなく、内容自体も大きく変わりませんが、5つの視点を活かし、業務でのアウトプットが比較によって生み出される価値に繋がると考えています。一方で、分析を活用する際の課題として、仮説検証のサイクルの速さや仮説の精度が挙げられます。特に、データ分析の初動を誤らないことが、仮説の精度を高める上で重要だと感じました。 仮説の壁をどう乗る? また、「仮説を立てることが難しい」との声をよく耳にします。皆さまはどのような方法で仮説を構築されているのか、ぜひ知りたいと思います。

データ・アナリティクス入門

データ比較で見える改善のヒント

データ分析に何を学んだのか? データ分析とは、比較することが重要であると学びました。特に、異なる要素を比較する際には、同じ条件下で行うことが大切です。また、周囲に結果を共有する際には、グラフを活用して直感的に理解できるアウトプットを作成する工夫も必要です。 クライアントのフィードバックはどう活かす? 私はサポート業務を担当しており、クライアントからのフィードバックをアンケート形式で収集しています。昨年との比較や、NPSとドライバー項目の相関を分析することで、組織の強みや弱みを明確に把握し、課題を抽出して解決に向けたアクションを実施していきたいと考えています。 定性的なデータの課題は? これまで、フィードバックから得られるのは定性的なデータのみで、昨年との比較やスコアが低下した理由の分析が不足していました。今後は、これらの点を深掘りできる力を身に付けたいと思います。

データ・アナリティクス入門

ロジックの先に見えた未来

MECEの意義は? 問題解決の過程でロジックツリーを活用する中、MECEの考え方が重要だと改めて実感しました。MECEとは、ある事象を「モレなくダブリなく」整理する手法ですが、その「モレなくダブリなく」を必ずしも厳密に適用するのではなく、切り口の感度を重視することが肝要だと感じました。 分類の工夫は? また、分類の際に「その他」を使う場合や、意味のある切り分け方のポイントについても再確認できました。こうした知見を基に、今後も状況に応じた最適なロジックツリーの構築に努めたいと思います。 ギャップ解消の策は? さらに、業務では常に計画とのギャップに注目し、数字や傾向を正確に掴む必要があります。現状の進め方が本当に正しいのか、ありたい姿に対して適切かどうかを再検証し、長期的な視野に立ってデータを分析しながら、ギャップ解消に向けたアクションにつなげていきたいと考えています。

データ・アナリティクス入門

目的と仮説で磨く分析力

比較対象は同条件? 分析においては、比較対象が本当に「apple to apple」になっているかを確認する重要性を学びました。各要素が同一条件下で比較されているかをしっかりと検証することで、正確な分析に結びつくと感じています。 目的と仮説は明確? また、ある事例をもとにしたグループディスカッションを通して、データ分析に入る前に「目的」や「仮説」を明確にすることの大切さを再認識しました。これらが十分に整えられていないと、分析のアウトプットに本来の意図が反映されず、効果が薄れてしまうことに気づきました。 外部環境の整理は? さらに、外部環境分析や企業分析に取り組む際は、まず自らの分析の目的を整理し、仮説をしっかりと組み立てるプロセスを徹底する必要があると感じています。この手順を着実に実行することで、分析の質が向上し、業務全体での活用がより一層進むと確信しております。
AIコーチング導線バナー

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right