クリティカルシンキング入門

未来を切り拓くクリティカルシンキングの旅

どのように過去を振り返るべきか? WEEK 1からの学習を振り返ると、断片的には思い出されるものの、見返したりライブ授業での振り返りによって多くのことを再確認できました。もう一度、おさらいとして見直しをしたいと思います。また、思考の出発点である「問い」を明確にし、問い続けることを意識的に徹底したいです。 課題を見つける勇気は持てていますか? 私はルーティン業務外の中長期視点の課題や問題について、つい後回しにしてしまう傾向があります。自分が考えやすい、考えたいことを先に考えてしまいがちなためです。ただ、こうした課題の中にこそ本質的な会社の課題が潜んでいる可能性があると思います。勇気を持ってその扉を開けてみたいと思います。 例えば、人員配置の適正化はビジネスモデルの変革にも影響する壮大なテーマかもしれません。また、海外展開強化に向けた現状課題の真因を探ったり、新規事業を模索する際にはバイアスをかけないように意識したりすることが重要だと考えます。 問いを明確にする方法は? 現状分析を試みる際にはフレームワークを使いますが、まずは問いを明確にし、一貫した問いにすることが大切です。そして、その問いについて共有するように心がけます。客観的な視点で考え、正しい日本語で文字に起こすよう意識します。相手が知りたい内容や興味を持てる資料であるかどうかも重要です。 小さな課題から何を学ぶ? 反復トレーニングの一環として、小さな課題を使ってクリティカルシンキングを体験することも続けていきたいと思います。

マーケティング入門

産業用コネクタ新製品開発の秘訣を学ぶ

振り返りで学びを深めるには? 6週間の振り返りを行うことで、記憶から消えかけていた内容を再度確認し、学習成果をさらに深く身に着けることができました。しかし、学んだことを実践に生かさなければ定着しないため、今後も継続して学習し実践していきたいと考えています。ただし、現時点では実践に移すためにはまだ不十分な部分もあり、さらに学びを深める必要があると感じています。 チームで市場を切り拓くには? 今回の学びを自社の産業用コネクタの新製品開発に活かしたいと考えています。まずは市場をしっかりとセグメンテーションし、競合分析を含む市場環境を確認した上で、何をすべきかをチームと共有しながら進めたいです。自分ひとりの視点に頼らず、チームで意見を言語化することで、様々なアイデアが出てくることがわかりました。このアプローチを自社のマーケティング業務にも取り入れ、チームで取り組みたいと思います。 新製品開発への具体的ステップ 具体的なステップとしては以下の通りです: 1. 狙う市場をセグメンテーションする(例:半導体製造装置、バッテリー製造装置、ビルディングオートメーションなど) 2. セグメントごとの市場ニーズを調査する 3. 調査したニーズに基づいた新製品のアイデア出し 4. 競合分析を行う 5. 新製品コンセプトを決定し、顧客へのヒアリングを実施 6. ヒアリング結果を基にブラッシュアップ 7. 製品化 これらのステップを通じて、自社の新製品開発を成功させるための具体的な計画を立てていきます。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

データ・アナリティクス入門

ChatGPTで学びの視点を拡張する方法

ロジックツリーとMECEの限界は? ロジックツリーやMECEを使って考えると、一人での作業では思考に癖が出て、洗い出しが不十分だったり、偏った視点になりがちです。しかし、CHATGPTを活用することで、自分とは異なる視点から「漏れなく」洗い出せる可能性が高まることを実感しました。実際、学習の際にCHATGPTを利用した結果、より早く自分なりの答えに近づくことができました。 定量分析の視点の活用法は? 定量分析の5つの視点については、普段何気なく行っていたことが体系化されていることに気づきました。データ分析を行う際には、どの視点が最適か常に立ち止まって考えるようにしたいと思います。 CHATGPTの効率的な利用方法は? また、問題を洗い出す際にCHATGPTを活用することで、様々な視点から効率的に問題点をリストアップできるようになりました。以前はこの作業に多くの時間を費やしていましたが、CHATGPTの登場により時間的コストが大幅に削減されました。学習ではコストと見合った洗い出しが重要だと教えられましたが、短時間で漏れなく洗い出すことを優先すべきだと感じています。 独自プロンプトの効果は? さらに、問題の洗い出しをスムーズに行うために、自分独自のプロンプトを考案しました。問題洗い出しの場面では、そのプロンプトを使って多様な視点から問題をリストアップすることを徹底しています。また、このプロンプトは従業員にも共有し、同じような場面で活用してもらうようにしています。

アカウンティング入門

ビジネス視座と実践スキルの両立: 私の学びの振り返り

どれだけ役立ったか振り返る 講座全体を振り返ることで、自分の「ありたい姿」を再確認し、本講座がどれだけ役立ったか、またアカウンティング以外で必要となるスキルやマインドを考える貴重な機会となりました。特に、「ありたい姿」として掲げたベンチャーマインドを高めるためには、ビジネスを俯瞰的に見る力や概念化するスキルが重要であることを実感しました。また、英語のオンライン授業も継続し、ただ受講するだけでなく、次の授業で言えなかったフレーズが言えるようになるなどの具体的な取り組みを続けていきたいと考えています。 次のアクションをどう選ぶ? 自分の「あるべき姿」を実現するためのマインドセットや今後のアクション(Next Action)として活用していきたいと考えています。具体的には、アカウンティングに関しては競合分析や自社の財務諸表を確認できるようになりたいです。その際には、必ず実際の例を取り上げて学びを深めていきたいと思います。また、ビジネスマインドを高めるために、参考書籍やグループディスカッションを活用し、より高い視座を持つことを目指します。 学びをどう進めていくか アカウンティングに関しては、この期間で一通り終わらせる意志があります。また、ブランドプランやキャッシュフロー計算書についても興味があるため、利用可能な最後の日までしっかりと学習を進めていきたいです。会社のフレームや自己流ではなく、学んだ方法でBrand Planを作成し、理解をさらに深めることを目指します。

クリティカルシンキング入門

学びを深める「問いの立て方」の極意

問いを特定するには? 正しい問いを特定しなければ、解決策や答えは見つかりません。問いを立てる際には、その問いが正しいかどうかを考えることが重要です。 視覚的表現の工夫をどうする? 視覚的な見やすさも非常に重要です。例えば、数字の羅列では理解しづらい情報も、〇●などの視覚的な工夫をすることで見やすくなります。相手に伝わる表現や方法を常に意識することが求められます。 情報の分解で何が見える? 分解方法によって、見えてくる情報が変わります。例えば、表を分解する際には、その分解方法によって異なる視点から情報が見えてきます。勝率から導かれる上位層~下位層の分け方なども工夫が必要です。 なぜ反復トレーニングが大切? 反復トレーニングの重要性を感じました。学習した内容をすぐに身につけることは難しいため、常に意識して反復することが必要です。 業務分析で答えをどう導く? 業務数値やアンケート結果の分析、会議内容の設定においては、分析結果から答えを導き、それをゴールとして会議を進行させることが重要です。また、問を特定することで正しい答えを導けること、そしてその問いを共有することで異なる考えや切り口を受け入れることの重要性も感じました。 問いの深堀りで得られるものは? 問いを特定する際には、その問いが正しいか考え、自分の主張や考えを的確に言葉や文章にすることが重要です。深堀を行い、思いつきで話すのではなく、一呼吸おいて考える癖をつけることが大切です。

データ・アナリティクス入門

理論を実践に変える学び

講義はどう実感? これまでの講義やワークを振り返る中で、思考が体系化され、頭の中がすっきりと整理された印象を受けました。いくつかのフレームワークについては既に知識がありましたが、実際の事例に当てはめて考えることで、ただ「知っている」段階から実際に使えるかどうかが別問題であることを実感しました。何度もアウトプットすることの大切さを改めて感じました。 契約データの見方は? また、各種施策を検討する際には、過去の契約データを分析する場面が多くあります。その際、ロジックツリーを用いて漏れなくダブりなく問題を整理し、複数の仮説を立てることの重要性を再認識しました。特に、契約データの項目選定や社外データの活用といった、目的達成に必要な分析手法を実践する意義を感じています。 SQL学習の計画は? 今後は、社内データを正確に取得するためにSQLの習得にも力を入れます。具体的には、オンライン講座を活用して4月から6月頃までに学習を完了させる予定です。 手書きの効果は? さらに、ロジックツリーやその他のビジネスフレームワークについては、パソコン上で作業するのではなく、あえて手書きで取り組み、自分の中に定着しているかどうかを確認しながら実践していきたいと考えています。 アウトプットをどう伸ばす? 実践的なデータ分析のアウトプット力を強化するため、関連する書籍や講座を活用し、9月までに数多くのアウトプットを経験して実力アップを目指していきます。

データ・アナリティクス入門

平均だけじゃ見えないデータ

平均値だけで大丈夫? 今週の学習を通して、データを扱う際に平均値だけを確認するのは不十分であると改めて実感しました。平均値はデータの中心傾向を示すものの、ばらつき(分散や標準偏差)を反映していないため、データの特性を正しく理解するには中央値や最頻値など他の代表値も併せて確認する必要があると感じました。 グラフの選び方は? また、データを直感的に把握するためには、単なる数値の羅列ではなく可視化が重要です。グラフの種類を適切に選ぶことで、データの傾向やパターンがより分かりやすくなります。時系列データには折れ線グラフ、カテゴリごとの比較には棒グラフ、割合を示す場合には円グラフなど、目的に応じた使い分けが求められると再認識しました。 代表値はどう使う? 普段、さまざまな部署とデータ分析を行っている中で、平均値だけではなく他の代表値を用いることや、適切なグラフを選択することが業務に直結する重要な要素となっています。これまで平均値のみで示していたデータに対して、中央値や最頻値を加えることで、より正確な解釈につながると感じています。 今後どう進める? 今後は、データを扱う際に平均値に偏らず、中央値や最頻値、分散などの情報も徹底的に確認します。また、他者が作成したデータや可視化についても、目的に適しているかどうかをチェックし、必要であれば適切な改善点を提案することで、誤った解釈を未然に防ぎ、正確な意思決定につなげていきたいと考えています。

クリティカルシンキング入門

業務での「MECE」実践法を身につける

学習計画をどう進める? 学習計画を忘れずに進めることが大切だと思いました。私はMECEの分け方でプロセスを分解することを忘れがちなので、この技法を使う癖をつけたいと考えています。 情報収集の重要性とは? さまざまな切り口で分析するためには、常に多様な情報を収集できるようにする必要があると感じました。例えば、カフェでのお客の滞在時間や年齢、それに利用目的をどのように把握するのかについて、日々意識を持って観察しないと有益なデータは得られません。 問題発見にプロセス分解? 業務においても、問題発見と解決のためにプロセスを分解することが有効です。特に問題がなさそうに見える場合でも、分析を進めることで問題が顕在化し、改善策を見出すことができるでしょう。例えば、サプライチェーンやバリューチェーンのどの部分に問題があるのかを見極めたり、予決算分析で単価や数量に分解してみたりすることが挙げられます。また、部下との1on1ミーティングでも、MECEに基づいて事前に準備を進めることが役立ちます。 学びをどう業務に活かす? これらの学びを今日から業務に取り入れてみることが重要です。アナログのツール、例えば紙なども積極的に活用するべきです。そして、単発で終わらせずにしばらく経ってから再度考えることも必要です。また、自分一人では偏りや視点の漏れが生じやすいので、信頼できる他人の意見も積極的に取り入れるように心掛けたいと思います。

クリティカルシンキング入門

データ分析の「視点革命」で成果を創る

データ加工で解像度は上がる? データを加工・分解することで、その解像度を向上させることができると再認識した演習でした。データに対して複数の切り口を持つことや、1行追加や率を出すといったひと手間も重要であることを実感しました。動画学習では「分解して何も見えなくても失敗ではない」という考え方を学びました。業務の中で、切り口が間違っていると感じることも多々ありましたが、新しい切り口の必要性に気づくこと自体が価値のあることであると理解できました。 本当に慣れているの? 私は経営企画を担当しており、数値分析には慣れているつもりでした。しかしながら、切り口や観点の不足、そして思考の偏りがあると感じることが少なくありませんでした。「慣れている」ということが、思考の停止を生んでいた可能性もあると気づかされました。 業務にどう反映する? 今回の演習で学んだデータ分析の基本的な考え方を、業務に活かしていきたいと思います。特に、社内の業績報告において、単に数値を報告するのではなく、その数値から得られる洞察を分析し、資料として提供していきます。幸い、私の立場は経営層や全社員に情報を発信できるものであり、報告の機会も多いため、この学びをすぐに実践に移すことが可能です。 レポートで何が伝わる? データ分析の結果を報告するための資料作成が、ただの作業とならないように、受け取る側の視点を考慮し、より良い情報発信ができるよう努めていきます。

アカウンティング入門

新しい学びに目覚めたBS分析の楽しさ

BSの基本を理解するには? BS(バランスシート)についての学習が進行している中で、以前はなじみのなかったBSの仕組みや名前の由来を知ることで、親近感が湧き、理解しやすくなりました。BSは左側が集めたお金の使い道、右側がその資金の集め方を示しており、表裏一体の関係です。また、資産の流動性については、1年を基準に流動と固定に分類されます。PL(損益計算書)と同様に、BSも事業内容や戦略が反映されます。 借り入れの影響と注意点 借り入れに関しても、当たり前ですが利子がつくため、慎重に行う必要がありますが、必要な場合もあります。「脂肪が負債」という例えが面白く、BSをCTスキャンに例えると理解が進みます。 自社のBSをどう活用する? まずは自社のBSを分析し、同業他社も確認します。自社では成長への投資がどのようなストーリーを持つのかを考え、自分なりの解釈を深めます。具体的な例としてJRやDeNAを参考にすると良いでしょう。他の受講生の意見にもあったように、自分の家計のバランスシートを見直すことも、身近で面白いアプローチです。 学習習慣を定着させるには? お盆期間を有効に活用し、朝の時間を学習にあてて習慣化しました。自社や同業のPLやBSを分析し、特色や個性を導き出すことに注力します。数をこなして慣れることが重要で、その際には資金の使い道と調達の両面で考えることが大切です。いよいよ、やり始める決心を固めました。

クリティカルシンキング入門

グラフ化で見える学びの新発見

自分で動かす意義は? 自分で手を動かしてみることで、理解の解像度が上がるのを実感しました。特に、データをグラフ化して視覚的に捉えるという発想は新鮮で、印象に残りました。 実践で何が見えてる? 自ら手を動かして学ぶことで、学習の理解が深まりました。また、グラフ化の方法についても新しい発見がありました。こうした具体的な例を取り入れることで、理解をさらに進められると思います。 継続の理由は? 今後も、手を動かしながら実践し、新しい手法を積極的に取り入れていくつもりです。継続することが重要だと感じています。 売上分析はどう見る? 売上の過去3年分の推移を、担当別、単科別、クライアント別、職種別に分析すれば、自社の戦略を見出せそうです。特に業績が振るわないコンサルタントについては、売上を既存客と新規クライアントに分けて要因分析し、営業戦略に活用できると思います。また、決定プロセスを徹底的に分析し、CSF(Critical Success Factors)を担当別に分析することもイメージできました。全社売上におけるお客様の属性の変化も分析する価値がありそうです。 実行計画はどうなる? これらの分析を早速実行してみたいと思います。まずどのデータを使うか探し出して加工し、毎週1時間程度の時間を確保して、自分の事業の特徴を深く理解していく予定です。そして、理解した内容を営業戦略にも活かしていきたいと考えています。

「分析 × 学習」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right