リーダーシップ・キャリアビジョン入門

学びの軌跡が未来を照らす

本当に大切は何? 偶然、自分が仕事で何を大切にしていきたいのかを自問する機会があり、明文化された項目も違和感なく受け入れることができました。しかし、考えた結果を実際に行動に移すためには、内面と外部からの両方のきっかけが必要であり、相応のエネルギーを要すると感じました。したがって、来たるべき時に備え、平時からじっくり考え認識しておくことが大切だと思います。 キャリア成長の秘訣? また、キャリアをデザインして行動を起こす過程には、その後の生き抜く期間があり、その中で新しい発想や取り組みを身につけるという考えがありました。現在の自分はまさにその段階にあり、日々の業務と本講座での学びから得られるものを、どれだけ自身の成長に繋げられるかを意識していきたいと考えています。 フィードバックは必要? さらに、過去の経験から、能力不足が原因であってもフィードバックなしに業務を任された時の徒労感やモチベーション低下を痛感しました。相手に応じたフィードバックと次の課題設定は、上司と部下双方にとって重要であると実感したため、日常的なコミュニケーションを通して相手との関係性を構築していくことが必要だと感じました。 部下の動かし方は? キャリアアンカーの自覚とキャリアサバイバルの理解は、自身のキャリアはもとより部下のモチベーション管理にも有効であると考えています。チームメンバーのやる気の源泉を把握し、プロジェクトがどのような方向に進むかを予測するための知識やマインドも、アドバイスの一環として備えておきたいと考えています。まずは、日常のコミュニケーションを通じてそれぞれの考えを理解し、業務を通して仕事の進め方や特性を把握。得た情報をどのように活用するか、体系的な理論やそれに沿ったキャリアパスと照らし合わせて自分なりの意見を持つことが大切だと感じました。 リーダーの見る目は? 私は小規模なグループのリーダーとして、メンバー一人ひとりの顔や仕事ぶりを把握しやすい環境にあります。そのため、大規模なプロジェクトのトップを経験された方が、全員を細かく見ることが難しい中でどのような点に注意し、メンバーのマネジメントを行っていたのかをぜひお伺いしたいです。

データ・アナリティクス入門

グラフ活用で成果を高める方法

グラフの読み方は? ■グラフの解釈と仮説の立て方 グラフを用いる際は、まず読み取りたい内容に合わせて最適な形式を選びましょう。グラフを観察する前に予測を立てることで、分析の方向性を明確にします。分析方法には、特徴的な部分を注目したり、複数のデータを比較して差異を見つけるなどのアプローチがあります。この過程で、解釈と仮説を同時に立てると効果的です。 R&Dチームの成果をビジュアル化する際には、チーム別に成果物の数をヒストグラムにし、偏りや詰まりを確認しましょう。この情報を基に各チームへのフィードバックを行い、改善につなげます。 データ表現の工夫は? ■ビジュアル化のヒント データビジュアル化では、代表値や散らばりに着目します。代表値の設定においては、データに応じて使い分けが重要です。 - 単純平均は、データ全体の総和をデータ数で割る方法で一般的に多く用いられます。 - 加重平均は、影響力の異なるデータに重み付けを行って平均を取る方法です。 - 幾何平均は、主に変化率や比率を扱う際に使用されます。 - 中央値は、外れ値に影響されにくいため、データの中心を把握する際に便利です。 さらに、散らばりを把握するためには標準偏差を用います。標準偏差はデータのばらつきを測る指標で、値が大きいほどばらつきも大きいことを示します。大きく逸脱したデータは重要なポイントかもしれないため、注意が必要です。 データが正規分布に近い場合、95%のデータが標準偏差の2倍以内に収まるとされています。この特性を活用して標準偏差を逆算する方法もあります。 最後に、プロジェクト参加者の満足度を測る際には、参加期間に応じた重みづけを行って加重平均を計算し、その結果を適切なグラフで示すことで満足度の傾向をわかりやすく伝えられます。 仮説検証の流れは? ■解釈と仮説の流れ まず、チームごとに成果物を数え、それを表にして視覚化します。次に、そのデータから予測を立て、詳細な解釈を行った上で仮説を形成します。この仮説をチームにフィードバックし、インタビューなどを通じて実態と照らし合わせることで、仮説を検証します。これにより、チームやプロジェクトのさらなる改善へと導くことができます。

リーダーシップ・キャリアビジョン入門

部下との壁を超える柔軟指示

状況にどう適応すべき? リーダーシップの変遷を学ぶ中で、現在は条件適合理論が最も適していると感じています。この理論の代表例であるパスゴール理論では、環境要因と適合要因の観点から、部下が直面している業務内容や、相手に合わせたサポートが求められると理解しました。つまり、状況に応じた柔軟なリーダーシップが重要であると学びました。また、リーダーシップは4種類に分類されることも学びましたが、細かいパターンにこだわるより、置かれている状況に応じて柔軟に対応する姿勢が現場では大切だと感じました。さらに、リーダーシップをどのように発揮しているかを診断する手法として、マネジリアルグリットがあることも知りました。これは、人と業務の2軸で各9点満点を基準に診断し、両面で高得点を目指す考え方です。 部下との向き合い方は? 上司として部下と向き合う場面では、まず部下が担っている業務内容や必要なスキル、そしてその業務がどのような相手に対して行われているのかを把握することが不可欠だと実感しています。その上で、支持的な行動を取るべきか、あるいは任せる行動を取るべきか、状況に応じて判断しています。しかし、優秀な部下の場合、過去の実績から「この業務も十分できるのでは」と判断しがちであり、また部下自身も「できない」と言いにくい側面があるため、すべてを的確に判断するのは難しいと感じています。こうした点から、部下とのコミュニケーションをさらに深める必要性を強く感じました。 成果にどう繋げる? これまでの経験から、多くの場面で的確に指示を出すことができ、どこまで任せるかの判断も多少はつくようになりました。しかし、近年のビジネス環境では、どんなに優秀な部下であっても必ずしも期待通りの成果が出るとは限らず、必ずしも明確な解決策が用意できるわけではありません。そのため、部下に対して明確な指示を出すのが難しくなっている現状を痛感しています。また、短期間で成果を求められる中で、部下に考えさせ成長を促すためのコーチングに十分な時間が取れなくなっていることも大きな悩みです。こうした現場での課題について、皆さんと一緒にどうすれば部下の成長と成果に繋がるか、意見を交換しながら考えていきたいと思います。

データ・アナリティクス入門

重要性を再確認しよう!データ分析の基本と新発見

今週の学びの重要点は? 今週の学習を通じて重要だと感じた点は以下の3つです。 まず、分析の目的を意識することの重要性です。現在の業務においても、データを加工したりダッシュボードを作成することに満足せず、あくまで何を導き出したいのか、何を証明したいのかといった初期の目的を常に意識するように努めています。この点を再確認し、今後も目的を忘れずに分析を進めることを誓います。 グラフ作成の新たな発見とは? 次に、グラフのX軸やY軸の配置が読み手に与える印象を大きく左右する点について、新しい発見がありました。これまではグラフの種類による印象の違いは認識していましたが、X軸やY軸の置き方にも注意を払う必要があることを実感しました。これからは、この点を意識してグラフを作成していきたいと思います。 比較分析の基本に戻る必要性 最後に、分析は比較であるという基本に立ち返ることです。業務では前年や前月など、期間軸による比較が多いですが、例えば国籍や予約経路など、他の軸での比較も意識することで多角的な分析が可能になります。これを踏まえ、実践に取り組んでいきたいと思います。 ホテル予約サイトでの活用法は? 現在、ホテル予約サイトのプラットフォーム運営に携わっており、登録施設の売上最大化のサポートをコンサルティングしています。日々の予約データを以下のように活用することで、より精度の高い提案ができると考えています。 - どの国籍からの予約が多いか、平均宿泊日数が長い国籍はどこか - 何月の予約が多いか - 売れている価格帯はどれか データ比較をどう進める? これらのデータを基に、最適な提案を施設に行いたいと考えています。この学びは現在の業務に直結する分野であるため、まずは実践を心がけます。そして、「比較」を意識して、これまで考えていなかった視点からの比較も試みたいと考えています。具体的には、自社内データや他社との比較だけでなく、政府の提供するデータとの比較も行ってみようと思います。 また、前期のナノ単科同様に他者への共有も積極的に行います。学びをチームメンバーに説明することで、より深い理解と正確な認識を確立できるため、この点も重視していきます。

データ・アナリティクス入門

ありたい姿が未来を創る

どんな姿勢を学んだ? 今日の講義では、「ありたい姿」と「あるべき姿」という言葉について学び、これまで抱いていた違和感が解消されるとともに、それぞれの考え方の意味合いを深く理解することができました。従来は「あるべき姿」が義務感に基づいてマイナスな感情を呼び起こすのに対し、「ありたい姿」は前向きでプラスの感情を生み出すと感じていましたが、講義ではどちらも問題解決につながる点が強調されました。具体的には、あるべき姿はマイナス視点から目標に対処する解決策であり、ありたい姿は現状を肯定する0視点からの解決策であるという考え方でした。 数値が示す意味は? また、目標と現在の間に生じるギャップを数値化することの重要性にも気づかされました。今回の事例では、売上にギャップが見られたことから、目標そのものがどれほど精緻に設定され、何のために存在するのかを問い直す必要性を実感しました。数字による分析を通じ、抽象的に捉えがちな現状を具体的に把握する手法が、分かりやすい課題伝達につながると感じています。 問題をどう具体化? さらに、ロジックツリーを活用して問題を具体化し、各変数を特定するプロセスの重要性も学びました。これまで漠然と理解していた内容を明確に分解し、比較検討することで最終的な解決策を導くための土台が整うと実感しました。実際の分析は、具体化・分類・比較を意識することで効果的に進められることが分かりました。 顧客への提案は? お客様の問題解決に向けた提案においては、彼らが目指す姿勢が「ありたい」か「あるべき」かを正確に把握しながら対話することが大切であると感じました。企業の場合、あるべき姿の実現は緊急度や優先度が高く、迅速な対応が求められる一方で、ありたい姿の実現は長期間にわたる質の高い取り組みが必要な場合が多いです。そのため、状況に応じたアプローチの使い分けが鍵となります。 戦略の視点は? 最後に、営業戦略を策定する際の分析の切り口についても考えさせられました。企業規模や自社シェア、業界内での立ち位置といった観点から仮説を立て、良い切り口と悪い切り口の違いを見極める方法について、今後さらに検討していきたいと思います。

デザイン思考入門

戻る勇気で生み出す革新の軌跡

テストで何を見極める? デザイン思考の最終ステップである「テスト」は、共感、課題定義、発想、試作というこれまでの流れを総仕上げしながら、各プロセスに戻るための道筋を示す重要な工程です。この段階では、試作に盛り込んだアイデアの充実度、課題定義の妥当性、そして初期の共感がどこまで実現されているかを議論します。状況に応じて、必要な工程に立ち返ることができるため、非線形的なアプローチの入り口とも言えます。 なぜ戻るが大切? 一般には「戻る」という作業は嫌われがちですが、デザイン思考を活用して何かを実現するためには、このプロセスが非常に大切だと感じています。初めからプロジェクトメンバー全員がその重要性を共有していれば、スムーズに進められるのではないかと思います。 システム開発の難しさは? 私の仕事であるシステム開発では、各ステップが線形に進む必要があるという制約があり、各工程ごとに承認や同意が求められます。一見するとデザイン思考とかけ離れているようにも思えますが、今回の学びを通じて、デザイン思考は全体を俯瞰するだけでなく、一部分の課題に対するアプローチとしても有効であると実感しました。特に要件定義の期間にデザイン思考を集中的に取り入れることで、その後の設計やシステムテストの工程に悪影響を及ぼすことなく、より効果的な成果に結びつけることができると考えます。 新規案件でどう活かす? 現在手掛けている新規案件では、顧客側からの提案依頼がまだ明確ではないため、この段階でデザイン思考を活用できる可能性を感じています。顧客を巻き込み、共感のポイントを洗い出し、適切な課題定義に結びつけることができれば、その後に弊社側で発案する解決策との連携も取りやすくなり、システム完成後の効果がより実感できるはずです。一方で、試作段階については、単なる操作画面のスライドショーでは伝わりにくいという過去の経験もあり、工夫が求められると感じています。また、システム開発においては試作にかかるコストも課題となるため、これまでの経験を活かしながら、デザイン思考をうまく取り入れてより良い課題解決へ繋げていきたいと思います。

戦略思考入門

選択と集中で未来を切り拓く方法

定量だけで良いの? 企業で働く私たちにとって、企業方針に沿った売上と利益の追求がビジネスの本質だと考えています。しかし、定量的な側面だけで意思決定を行うのは不十分で、多面的な視点から評価し、定量情報と定性情報を組み合わせることで、最適な意思決定を行う必要があります。その判断が正しかったかは実行後の結果からわかるため、短期間での振り返りと必要に応じた修正が重要です。 何を優先すべき? 「取捨選択」や「選択と集中」を常に意識していますが、改めて重要なのは、何を優先すべきかに注力することです。時にはビジネスの慣習に囚われず、思い切って無駄を省くことの重要性を再確認しました。期の節目には活動を振り返り、評価が厳しいものについては、その継続や中止をプロとコンスで整理してみることも良い方法だと思います。 具体的な施策は? 最近の具体的な捨てる施策としては、2024年10月から一時的に自社製品単体でのウェビナー開催を中止しました。顧客獲得が鈍化し、稼働対効果や費用対効果が合わず、メンバーのモチベーションも低下したためです。代わりに、複数の製品を組み合わせたセミナーイベントを企画し、顧客にとって魅力的で価値あるコンテンツを提供していきます。 新たな接点を見つける? また、リアルセミナーでは、顧客と営業担当との新たな接点を作る目的を設定し、単なる顧客獲得にとどまらないゴールを目指しています。PDCAサイクルを回しながら、必要ないものを捨て、継続すべきものや改善が必要なものを見極めて取り組みます。 今後の計画は? 年末を迎えるにあたり、チームメンバーには現在の業務を見直させ、過去の延長にある業務を棚卸しするよう指示し、2025年度からは取捨選択した新たな活動に取り組む予定です。2025年1月から実施する新たな代替策の成果を、稼働対効果や費用対効果、顧客獲得や売上の視点から評価し、それを2025年4月からの新しい活動方針に活かしていきます。そのため、管理者と中期的視点で戦略を練り、ゴールを設定し、2025年3月までにチーム全体に浸透させる計画を進めています。

戦略思考入門

経済性で実感する現場の知恵

固定費削減の秘訣は? 固定費削減の方策として、規模の経済性、習熟効果、範囲の経済性という三つの概念を学びました。それぞれの考え方が、企業活動の異なる側面においてコスト低減に寄与する点が印象的でした。 規模の経済性をどう考える? まず、規模の経済性は、特定の製品における固定費の削減に有効ですが、メーカーの場合は生産設備の稼働率にも注意が必要です。例えば、汎用品のように大量生産が求められる製品に適している一方、当社では少量生産で高機能な材料の開発を目指しているため、その効果はある程度に留まると考えています。 習熟効果はどう活かす? 次に、習熟効果については、生産量が増えるにつれて単位当たりのコストが下がるという現象を指します。私が関わっている化学メーカーでは、生産期間が延びることで生産技術が向上し、結果としてコスト改善につながっていると感じました。ただし、市場環境の変化、たとえば競合他社の参入や市場縮小に伴う価格競争となった場合、習熟効果による製造費用の低減が必ずしも利益に直結しない可能性もあると考えます。 範囲経済の活用はどう? また、範囲の経済性は、会社が保有する情報、顧客、技術などの資源を他事業でも活用することで、単独で行う場合よりも効率的にコストを削減できる効果です。当社では、各部署間での情報共有や人材の配置転換が進められており、個々のスキルや経験を新たな部署で活かすという点で、この理論が実践されていると感じました。しかし、一部では新たな考え方を柔軟に受け入れる一方で、個人の意見に固執する傾向もあるため、部署間の連携強化にさらなる工夫が求められているように思います。 未来戦略は何が必要? 今後は、同じ分野で新規事業を検討している他部署との情報交換を積極的に行い、範囲の経済性をより一層効果的に活用することが重要だと考えています。また、規模の経済性と習熟効果に基づいた戦略は、開発した製品の価格設定にも反映させるべきで、短期的な視点に偏らず、中長期的な販売量や価格の動向を予測した上で、適切な価格決定を行うことが大切だと感じました。

戦略思考入門

実践から学ぶ戦略の知恵

ゴールはどう決める? 戦略思考とは、達成すべきゴールを定め、そのゴールへ向かう効果的な道のりを計画することです。ゴールを決める際には高い視点から全体を俯瞰し、自分たちの強みや独自性をどのように活かすかを見極めることが求められます。たとえば、ゴールから逆算する方法やスタート地点、途中の進捗地点から計画を確認することで、適切なゴール設定と実現可能な計画かどうかを判断することが重要です。 制作体制は見直す? 制作チームの体制や中長期の組織計画について考えると、現在は各事業部の制作物を一つの窓口で対応しています。しかし、組織が拡大し各事業部ごとに制作チームを設置する場合、今の体制の約3倍の人材が必要になることが予想され、採用と育成が大きな課題となります。社内ですべての制作を行い、無形のものをビジュアル化するという強みを更に強化するためには、メンバー一人ひとりが早期に成長し、入社から短期間でレベルアップできる体制を整える必要があります。 指導は伝わる? 私自身もマネジメント力向上を目指し、メンバーへの指導においては、相手に分かりやすい言葉を選び、具体性を持って伝えることを常に意識しています。 スケジュール対策は? また、制作スケジュールの策定においては、複数のプロジェクトが同時進行しているため、デザイナーの作業が不足しがちな点が課題です。各プロジェクトのスケジュールを立案した後は、デザイナー各自の業務状況と照らし合わせ、週ごとに確認を行うことが重要です。さらに、急な依頼など予測困難な事態に対応するため、計画には20%程度のバッファを設けることを心がけています。各事業部との連携を密にし、顕在化していない案件がないかを常に確認するとともに、プロジェクトごとに優先順位を明確にし、場合によっては納期の調整も検討する必要があります。 他社の考えは? 最後に、社内の各部署、特に総務や経理に近い業務を担う部署がどのように中長期計画のゴールを設定しているのかについて、他社での取り組みをぜひ伺いたいと思います。

マーケティング入門

営業店の心を掴むバックオフィス戦略

マーケティングの本質とは? マーケティングの基礎的な役割について学び、特に「マーケティングの役割は販売の必要性をなくすこと」という考え方が印象に残りました。これは、顧客が自然と商品やサービスを選びたくなる仕組みを作ることがマーケティングの本質であり、単なる営業活動の補助ではなく、顧客との信頼や価値提供を通じて成り立つものだと理解しました。また、「マーケティングとは顧客に買ってもらえる仕組みを作ること」という視点も重要で、単純な売上増加ではなく、顧客が求める価値を見極め、それをいかに提供するかが鍵であると感じました。 バックオフィス業務の新たな視点 私は現在バックオフィス業務を担当しており、営業店のフォローや業務効率化、工数削減を主な役割としています。そこで学んだマーケティングの考え方に基づいて、バックオフィス業務も営業店に「選ばれる存在」になることが重要だと気づきました。具体的には、営業店にとって我々のサポートが単なる補助ではなく、「これがあるから安心して営業活動に集中できる」と思ってもらえる仕組みを作ることを目指したいと考えています。そのためには、営業店が抱える課題やニーズを深く理解し、業務の「良さ」や価値を適切に伝える方法を考える必要があります。 知識をどう実践に活かす? マーケティングの知識を実践に活かすためには、まず仲間との反復的な共有を行うことが有効です。例えば、学んだことを週次で共有するミーティングやディスカッションを通じて、自分の業務にマーケティングの考え方を落とし込む練習をしています。また、6週間という限られた期間で「予習」と「復習」のサイクルを構築し、学んだ単語や知識を確実に定着させることを意識しています。さらに、具体的な行動として営業店とのコミュニケーションを増やし、現場で必要とされるものをヒアリングする機会を設けたいと考えています。その情報を基に、魅力を感じてもらえるような提案や支援を行い、バックオフィスの存在価値を高めていきたいと思っています。

データ・アナリティクス入門

ファネル分析で未病市場に挑む理由

数値分析の極意は? 数値分析では、プロセスごとに「率」にして検討することが有効です。A/Bテストは、同期間にランダムにユーザーを振り分け、その結果を比較する方法で、比較ポイントを絞ることが大切です。AIDAやAMTUL、AISASなど、プロセス設定に利用できるフレームワークは多様に存在します。また、ダブルファネルという概念もあります。これは、購買までのファネルと、購買後に他社に影響を与えるファネルが存在し、1人の顧客がその後の影響力で10にも100にもなる現代的な考え方です。 広告制約の壁は何? 私の業界では広告制約があり、顧客の声が届きにくいという問題があります。そのため、詳細な購買プロセスが追いにくく、単純なファネル分析は難しそうですが、未病分野の自費購入をターゲットとした市場には活用できる可能性があると考えています。営業部のプロセスにファネル分析を使用すれば、製品を少しでもよいと思ってもらえた後、どこがボトルネックになって採用決定に至らないのかを見極めることが可能です。AMTULが購買意思決定までのプロセスに最も近いと感じ、これを用いて考えています。採用までに多くのステークホルダーが関与し時間がかかるため、AIDAのような単純な興味や欲求だけでは購買に結びつかず、AMTULのように試用のプロセスが必須となるからです。 効果数値はどう変わる? プロセスとウォーターフォールチャートを掛け合わせた活用も試みています。プロセス段階に分けてグラフ化するのは初めてですが、採用後にカテゴリ別の売上内訳を見る際に使用します。ただし、プロセスが独自になりがちなため、段階設定には注意が必要です。さらに、ダブルファネルの考え方を応用し、購入施設からのエリア波及効果を数値で測る挑戦をしています。具体的には、1施設で売上が上がると、同医療圏内の売上や件数がどの程度上がるか、大施設の採用が小施設へどれほど影響を与えたかの数値化に取り組んでいます。

データ・アナリティクス入門

データ分析で得た学びの再発見

データ分析の基本を理解する 目的を明確にすること、要素を整理すること、そして比較することがデータ分析の基本だと学びました。特に、分析は比較であるという点が印象に残っています。しかし最も重要なのは、データ分析が「何のため」に行われるのか、その目的を明確にすることだと改めて感じました。ケーススタディではデータ分析が上手くいかなかった例もあり、要因に期間や項目の一般的な回答だけでなく、上司と部下のコミュニケーションについても意見が挙げられていました。そのため、基本に立ち返る必要性を再確認しました。 具体的な要素整理のポイントは? 具体的な要素の整理を心掛けました。例題で行ったPC購入に関するディスカッションでは、メーカー、金額、スペック、OSなど具体化することで、共通認識が得られやすいと感じました。また、分析の際には定量データ同士、定性データ同士を比較することの重要性も理解しました。平均値についての説明は分かりづらい部分もありましたが、先生が示してくれたビジュアルを通じて少しずつ理解が進みました。 退職分析における「目的」の重要性 私は人事部でDX担当をしており、退職分析を行っています。職種、年齢、勤続年数といった要素を洗い出し、比較をしていますが、「目的」を見失いがちです。退職率を下げるだけでなく、「若手の」離職率、「技能職の」離職率といった具体的な目的を持ち、分析を続けていきたいと思いました。また、グラフを作成して終わるのではなく、伝えたい「メッセージ」をしっかり伝えるための改善も進めたいです。 データ分析で立ち止まる瞬間 データ分析を実践することは重要ですが、一度立ち止まって「目的」を考えること、また定期的にその目的に立ち返り確認することも必要だと感じました。私自身、考えすぎる傾向があるため、要素の整理においては柔軟な思考を持つように心がけていきたいです。
AIコーチング導線バナー

「必要 × 期間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right