デザイン思考入門

試作とフィードバックで見つける新たな一歩

目的と設計はどう変わる? 自分の目的と相手の目的を整理しながら、自社のWebサイトの設計を見直す必要性を感じました。無形商材の場合、ユーザーに疑似体験させる工夫が重要で、サービスの流れや機能を紙やスライドで視覚化し、細かいフィードバックを受けることが効果的だと考えています。 試作で何を掴む? 試作(テスト)からフィードバックを迅速に得ることが大切です。また、どのようなフィードバックを求めるかという視点を事前に持つことも必要だと感じました。課題の定義や情報設計が漠然としていると、良い試作へとつながりにくいため、前提をしっかり作り込み、アイデアを十分に出し切ることが重要です。 小さな挑戦はどう効く? さらに、小さな試みを積み重ねることで、結果的に近道が見えてくると実感しています。正解へいち早く辿り着きたいという焦りが、かえってネックになることもあるため、スピード感と丁寧さの両面を大切にしていきたいと思います。 情報設計で成果を出す? 情報設計においては、自分の目的と相手の目的を再検討し、課題の定義と連動させる余地があると感じています。さまざまなプロトタイプが存在し、それぞれの簡易さや工程の多さに違いはあるものの、得られるフィードバックの質にも個性があり、細かな確認を積み重ねることで質の高い成果物を生み出すと確信しています。

戦略思考入門

生産性向上のための取捨選択の極意

事実と推計の評価は? 取捨選択を考える際は、多角的に評価することが重要であり、それに対する重みづけも大切です。評価を行う際には、実際の事実を集めることが最も効果的ですが、信頼できる推計を利用することも有効な手段です。経験を積むことで、適切な生産性の判断ができるようになりたいと考えています。また、定量的な視点に限定されず、経緯など定性的な視点からの補足も有効です。捨てるためには、事前の準備が重要であると感じました。最終的には「判断」であり、学びをいかに使いこなすかは自分次第です。 不要業務の見極めは? 我々の組織においては、「やらなくていいこと」はあまり多くないと気付かされました。つまり、IT部門が行わず他部署や社外に引き渡すことが「やらなくていいこと」に該当すると考えられます。突発案件も含め、必要に応じて業務を放棄するという選択肢を用いて、現場の負荷を一定範囲内でコントロールしたいと思います。 優先順位はどう決める? 業務の優先順位を評価するために、いくつかの基準を定めることが必要です。まず、現状の業務を重要性、領域、役割などで大まかに層別します。そして、層別したグループごとに評価し、優先順位をつけます。この際、優先度の低いグループについては、廃止やアウトソース、他部署への引き渡しといった方針を立てておくことも考えに入れます。

データ・アナリティクス入門

数字が語る驚きの実態

なぜ多角的に見る? データ分析は、ただデータを見るだけでなく、さまざまな角度から比較し、分析することが重要だと感じました。数字にまとめたり、数式を用いて関係性を明らかにしたりすることで、隠れた事実に気付くことができます。また、代表値や分布、平均値と標準偏差など、基礎的な手法を通じてデータ全体の傾向を掴むことが効果的です。 どの代表値が適切? 社内で扱うデータはボリュームが大きいことが多いため、比較の際には代表値に注目する場面が多かったです。これまでは直感的に平均値や中央値を代表値としていたものの、データ全体の特徴を踏まえてどの代表値を採用すべきか再検討する必要があると学びました。さらに、業務ではデータをマトリックスにまとめたり、グラフや分布図にして視覚的に把握できる形に変換することで、数字が伝える実態をより明確に捉えることができると実感しました。 何を比較検証すべき? 大量のデータを取り扱う際は、さまざまな代表値の算出方法を試すこと、また平均値においても単純平均以外のパターンが存在することを忘れずに検証することが大切だと感じました。データを可視化する際には、「何を見たいのか」「どこを比較するのか」といった目的を明確にした上で、見たい事象が浮かび上がるよう工夫することが、今後の分析業務において重要なポイントだと再認識しました。

クリティカルシンキング入門

伝わる工夫で魅せる資料術

資料の視覚化は? 伝えたい内容は、単なる言葉だけでなく、視覚的に表現することでより効果的に伝わることを実感しました。テキストや色の使い方、資料上での順序、グラフの種類、そしてメッセージとグラフとの関連性など、工夫する要素が多々あります。これらは、単に思いつきで作成するのではなく、受け手を意識して選び抜く必要があると感じました。さらに、資料を作る際は、どの場面で誰に見せるのか、作成の目的を明確にすることが大切です。 部内外の説明は? 自分が所属する部署では、部内外に業務プロセスの改善や新規プロジェクトの導入を説明するとき、過去のデータと現状の推移を図示するなどして、なぜその取り組みが必要なのかを明確に伝えています。こうした手法は、今回学んだ内容を活かすのに非常に役立っています。また、部下の資料チェックを行う際も、相手に伝わりやすい工夫がされているか、ポイントが正確に押さえられているかを意識するように心がけています。 今後の資料作りは? 今後は、資料作成や確認の際、今回の学びがしっかりと反映され、受け手に必要な情報が探さずとも見つかるような工夫がなされているかを常にチェックする習慣を続けたいと思います。また、表やグラフの種類ごとにその効果を最大限に発揮する使い方をさらに学び、より具体的で理解しやすい資料作りに挑戦していきます。

デザイン思考入門

可能性を拓く営業とデザインの出会い

デザイン思考はどう違う? 今回の講義では、デザイン思考が唯一の正解ではなく、仮説・分析・検証といった他の思考法と組み合わせることで真価を発揮する点が印象的でした。特に、コンサルティング的なアプローチとの補完関係を強調していた内容が新鮮に感じられ、今後、SPIN営業法との親和性やその違いについてもさらに深掘りしてみたいと思いました。 視点の広がりは何故? また、課題で「まな板のフロー」を考える際、無意識にデザイン思考の5ステップを模倣してしまった経験から、視点の幅を広げる必要性を強く感じました。 顧客対話はどう磨く? 営業活動においては、顧客の課題を深く理解し、潜在ニーズを引き出すことが重要です。デザイン思考の「共感」や「アイデア発想」は、SPIN営業法の質問設計と共通する部分があり、顧客との対話をより創造的にする効果があると感じています。さらに、製品提案にとどまらず、顧客体験全体を設計する視点を取り入れることで、差別化された価値提供が可能になると考えています。 共感と発想の理由は? 今後は、まず顧客ヒアリング時に単なる要件確認に留まらず、顧客の背景や感情に踏み込む「共感フェーズ」を意識します。次に、営業提案においては、既存の枠を超えた解決策を模索する「アイデア発想」のプロセスを積極的に組み込んでいきたいと思います。

データ・アナリティクス入門

実践で磨く、A/Bテストの秘訣

情報伝達の大切さは? 今回の学びを通して、情報が漏れなく重複なく伝わることの大切さを改めて認識しました。目的を見失わず、必要なポイントを抑えることの重要性が意識されました。 A/Bテストの効果は? 特に、A/Bテストの活用は検証のしやすさや結果の共有において分かりやすい手法であると感じました。一定の制限をかけ、絞り込むことで方向性を見失わずに進める工夫にも気づきました。 広告運用のコツは? 実務でgoogle広告を活用する中で、A/Bテストの形式で構成され、AIが複数のセンテンスを組み合わせることで広告の最適化を図る仕組みを再認識しました。小さな変更を繰り返すアプローチは、実際にすぐ活用できる効果的な方法だと実感しています。 プロモーションはどう? また、運用しているプロモーションに関しては、早速実践に移し、チーム内で共有して理解を深めることが重要だと感じました。取得したデータをもとに分析し、意見を擦り合わせることで、より精度の高い施策へと進化させていく予定です。 チームでの改善は? 今後は、A/Bテストの手法をさらに高度なものにグレードアップすることも視野に入れています。ただし、個々のスキルに偏ることなく、チーム全体でアウトプットの場を設け、ディスカッションを重ねるよう取り組んでいきたいと考えています。

クリティカルシンキング入門

問いが導く学びの実感

6週間の振り返りは? 6週間で学んだ内容には記憶の濃淡がありましたが、短時間で一気に復習できた点は大きな収穫と感じています。講義で示されたように「問いから始める」ことの重要性を再認識し、その問いの設定がその後の行動やアウトプットに大きく影響することを痛感しました。また、グループワークに参加しなかったものの、「知識のインプットだけでは成果に結びつかず、自己満足に陥る」という点が胸に深く響きました。 問いの価値を感じる? 相手や仕事内容に関わらず、与えられたデータや情報を盲目的に受け止めるのではなく、「問いから始める」、「問いを残す」、「問いを共有する」という姿勢を常に心がけたいと考えています。また、人に伝える際には、受け手の視点に立った資料の構成や図解、適切な日本語表現が重要であり、こうした工夫をアウトプットに反映させることが求められると感じています。 成果をどう創るか? 知識のインプットだけでは十分な成果に繋がらないため、学んだことを効果的にアウトプットできる仕組みの構築が必要です。個人で完結するタスクにおいては生成AIを活用したフィードバックサイクルを確立し、他者とのやり取りが発生する場合には、最終アウトプットを提示する前に同僚との説明や意見交換を行うようなタスク計画や会議設計を進めていきたいと思います。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

多視点で挑む実験の力

A/Bテストは何が大事? A/Bテストの重要性を深く理解することができました。従来は、既存の手法でうまくいかなければ次の手法を試し、その結果を比較すればよいと考えていました。しかし、どちらか一方の仮説に固執することは、結果に対してあらかじめ決めつけるリスクにつながると実感しました。 仮説検証の新発見は? また、A/Bテストに沿った仮説検証を通して、仮説をより深く掘り下げるとともに、新たな着眼点を見つけやすいことにも気づきました。これにより、一方の仮説に偏ることなく、複数の視点から結果を検証する必要性を再認識しました。 言語化で何が整理できた? さらに、これまで問題解決に取り組む際、自然と「What、Where、Why、How」のステップで考えていたものの、言語化を通じて自分の思考が整理できたと感じます。特に、今回の学びから「Why」や「How」の視点が不足していることに気づき、A/Bテストを利用した検証プロセスを通して、データ分析を含めたより効果的な問題解決のアプローチを模索していきたいと考えました。 どう視野を広げる? 課題に取り組む中で、仮説や結果について決めつけがちな自分に気づくことができたため、今後はさまざまな観点から視野を広く持ち、仮説の立て方や分析方法を多角的に見直していく努力を続けたいと思います。

クリティカルシンキング入門

効果的な伝え方を学び施策提案に自信がついた理由

資料作成の基本ステップとは? 相手に伝えたい内容を効果的に伝える資料の作成方法を学びました。以下のポイントに基づいて説明します。 まず、伝えたい内容を一文にまとめ、しっかりとフレーズ化します。そして、フレーズ化した内容の根拠としてデータを順番に提示し、相手に情報を探させないようにします。さらに、データの見せ方についても工夫し、適切なグラフや表を用いることで、伝えたい内容を明確に表現します。フォントの大きさや色、太さなどにも注意を払い、丁寧にスライドを作成する必要があります。また、相手に読んでもらうために見出しを工夫することも重要です。 新規人事施策への応用は? この方法は、新規人事施策の立案時に活用できそうです。施策を上司に説明する際や、役員・経営層向けの説明時にも役立ちます。さらに、社内承認取得後に社員向けおよび社外向けに開示する際の説明でも、この手法を効果的に使うことが期待されます。 スライド作成の設計図は? スライドを作成する際には、まず設計図を作ります。最も伝えたい内容や決裁を取得したい内容を一文にまとめ、フレーズ化します。その後、フレーズ化した内容の根拠となるデータを順番に提示します。データの見せ方も工夫し、伝えたい内容に合わせて効果的なグラフや表を用いることで、相手に理解されやすいスライドを作成します。

クリティカルシンキング入門

振り返りで見つける成長のヒント

主語と述語は合ってる? 文章を書く際は、主語と述語の対応に十分注意する必要があります。主語が入れ替わったり、文章が長すぎたりすると、相手の理解が妨げられるためです。主語を統一し、文を適切な長さに区切ることで、情報がより伝わりやすくなります。 効果的な評価はできた? また、ただ筆を進めるだけでなく、効果的な文章にするためには評価も欠かせません。演習では、どの理由付けが効果的かを評価する課題がありましたが、私自身はすべて逆の選択をしてしまいました。相手の関心をしっかりと捉え、主張を支えるための適切な理由付けを評価しながら文章を組み立てることが求められます。 根拠整理はどうする? さらに、ピラミッドストラクチャーを利用して主張の理由や根拠を整理することで、相手に伝わりやすく納得感のある文章が作成できます。この手法は、メールやプレゼン資料の準備において特に有効です。具体的には、主語と述語の対応を丁寧に確認し、文章を必要に応じて短く区切ること、そして提案資料作成時にピラミッドストラクチャーを活用して主張の根拠を明確にすることが重要です。 普段から実践してる? ちなみに、ピラミッドストラクチャーの概念は知っていましたが、実際に使用したことはありませんでした。皆さんは、普段からこの手法を取り入れていますか?

データ・アナリティクス入門

仮説とデータで挑む本質探求

対概念をどう理解する? 「対概念」を活用し、仮説を検証する際は、まず「当社の戦略が原因である」と「戦略以外の要因が原因である」との両面から疑い、根拠を明らかにすることが求められます。 A/Bテストの注意点は? A/Bテストを実施する場合、前提条件を統一することが不可欠です。施策の要素を増やしすぎると、原因と結果の関係が不明瞭になるため、各施策は1つずつ実行するのが適切です。 仮説の再検証は? 現在は、大量のデータから分析し仮説を抽出、その結果を基に施策を検討するプロセスが行われています。しかし、原因に関する仮説設定とその再分析のフェーズが不足しているため、仮説と分析を繰り返すプロセスをより一層実施する必要があります。 比較検討の基本は? また、ABテストの前提条件は「Apple To Apple」を基本とした比較が原則です。この考え方を意識して、施策間の比較検討を行い、効果の正確な判断を下すことが重要です。 今後の分析アプローチは? 今後は、大量データからの分析と仮説抽出は現状通り行いながらも、フレームワークを活用して幅広い仮説を立案し、必要な分析を追加することで、各仮説の更なる深堀りを実施します。比較検討の際は、要素を正確に抜き出し、必ずApple To Appleの条件で検討することが大切です。

「必要 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right