データ・アナリティクス入門

実践で磨く解決力の秘密

プロセスはどう区別? 今週は、問題解決のプロセスにおいて、仮説を立てて検証し、解決策を考えるための考え方を学びました。まず、WHYの段階では、各プロセスを分けて考える手法の重要性を再認識しました。プロセスごとに名称や意味合いを設定し、母数や基準が異なる場合には「率」といった数値化の視点を取り入れることで、どの段階で数値が少なく、全体の推移がどうなっているかをバランス良く把握することが大切だと感じました。 対概念の効果は? また、原因の仮説を立てる際には、「対概念」という方法を用いることで、問題に関わりのある要素を洗い出し、それらを2つの対に分けることで、より幅広い視点から原因の可能性を探るアプローチの有効性を学びました。 A/Bテストの意味は? さらに、HOWの段階では、A/Bテストを通して仮説を実際に試し、データを集計しながら解決策へと繋げる方法について学びました。A/Bテストを行う際は、①目的と仮説を明確にすること、②一度に一要素ずつ検証すること、③条件(時間や期間など)を揃えることの3点が重要であり、これによりリスクを抑えつつ効果的な施策の検証が可能となります。 知識集約はどう進め? また、今回の学びを通じて、これまでの知識を集約し、プロセスを意識して丁寧に分析する重要性を再認識できました。仮説設定の根拠を明確にし、必要なデータを整理することで、より高度な分析に繋げるための前提意識を持つことが求められると感じました。 薬剤師業務の改善は? 一方、薬剤師業務のボトルネックの分析においては、業務を細かいプロセスに分解し、どの段階で時間と労力がかかっているかを明確にすることが、従業員の残業時間や患者の待ち時間短縮に直結する重要なポイントであると学びました。こうした検証を通して、設備の導入などの改善策の効果を試験的に確かめ、必要に応じて他の現場にも展開する判断材料とする考え方は、非常に実践的だと感じました。 A/B分析で見直す? さらに、部内でA/B分析を活用して、例えば店舗の処方箋枚数の伸び悩みという問題に対して、複数の要因を一つずつ検討し、原因を絞り込んだ上で対策を考える手法も学びました。これにより、問題の背景にある具体的な要因を多面的に理解し、適切な対策立案へとつなげることができると実感しました。

戦略思考入門

戦略思考で描く新たな未来

どんな刺激を得た? 今週は、他の優秀な受講生の事例や考え方を耳にする機会が多く、大変刺激を受けました。特に、考え方が明確な方々のお話を聞くと、上司やその周囲の方が戦略思考(もしくはその一部)を身につけ、周りにアドバイスしている様子が印象的でした。講義中にグロービスさんが度々触れていた、アウトプットと意見交換の機会が、学びの定着や考え方の変革に非常に有益であると感じました。 授業で何を感じた? ライブ授業では、差別化(VRIOの視点で語られる事例も見受けられた印象です)と、捨てる判断軸について多くの意見がありました。私も今後の事業企画において、この二点を特に重視していきたいと考えており、他の事例も積極的に取り入れることで、疑似体験を通して学んでいこうと思います。 キャリアはどう見る? また、キャリアビジョンについて考える機会があったため、改めて「2040年に介護のために帰省して暮らす場合、どのように生計を立てるか」という長期課題について見直すつもりです。 実践で何が変わった? 現状、本業で新規事業企画に関わる機会に恵まれており、すでに戦略面での議論もできる環境にあります。こうした実践を通じて知識を定着させるのにこれ以上ない機会だと感じています。一方で、現職を離れて帰省する場合、決まった時間で働くという会社員の立場が取りづらくなるため、会社に求められるスキルセットだけでなく、市場が求める多様なスキルの習得も必要だと考えています。 どのスキルを磨く? 情報のアンテナを広げ、自分や提供するサービスの価値をわかりやすく伝える能力―ロジカルな数値表現やライティングスキルなど―を磨くことが求められると実感しており、会社員としての立場を活かしてこれらの能力を実践的に習得していきたいと思います。 学びをどう共有? 現在、チームメンバーがいる環境の中で、本講義での学びをアウトプットし、議論の基盤となる知識の共有や自身の理解の定着に努める方針です。 戦略をどう築く? さらに、現在関わっているプロジェクトでは、5年後の売上目標を含む事業計画の解像度が低い状態にあり、上位層向けに盛りに盛った目標数値が先行している状況です。今後は、各種フレームワークを活用して説明可能な見込み値を試算し、不十分な点があれば新たな戦略を検討していこうと思います。

クリティカルシンキング入門

ナノ単科が開く挑戦の扉

どのグラフを選ぶ? データを視覚化して情報を分かりやすく伝える際は、テーマに合ったグラフを選ぶことが大切です。時系列の変化を示す場合は左から古い順に配置された縦棒グラフ、要素ごとの伸びや量を表す際には横棒グラフ、割合を示す場合は円グラフや帯グラフ、変遷を伝えるときは折れ線グラフを使うと効果的です。間違ったグラフを選んでしまうと、本来伝えたいメッセージが正しく伝わらなくなるため注意が必要です。 フォントで印象作る? また、文字のフォント、大きさ、色などは、受け手に与える印象を大きく左右します。強調したいメッセージに対しては、これらの要素をうまく活用することで、より伝わりやすくなります。反対に、注意事項を伝えたいにもかかわらず、小さいフォントや細字、目立たない色使いをすると、伝えたい内容がうまく伝わらない可能性があります。 視覚配置はどう? スライドを作成する際は、リードメッセージと、それに続くグラフや表、アイコンなどのビジュアル要素が一体となっているか確認することが重要です。リード文とグラフの配置にずれがなく、アイコンや色彩が伝えたいポイントを適切に表現しているか、しっかりチェックしましょう。 情報整理はできる? クライアントに提示するドキュメンテーションの場合、リード文やボディに情報が散乱しすぎたり、何を伝えたいのかが不明瞭になったりしないよう注意が必要です。社内資料やクライアントから受領した資料を使う際には、メッセージとグラフ、表にズレや矛盾点がないか、十分に確認することが求められます。よく確認し、擦り合わせを怠らないことで、論点がブレたり、ゴールが不明確になったりする事態を防げます。 図表の確認は? さらに、グラフや表にする際は、タイトルや単位など必要な情報が欠けていないか、常に注意深くチェックしてください。伝えたいことや論点を整理し、日本語の文章に落とし込むことで、より分かりやすく伝えることが可能になります。色やフォント、図表の配置が相手の理解を助ける順序になっているか、また、自分が話しやすい構成になっているかを意識しましょう。 資料の見直しは? 最後に、日々目にする膨大な資料やデータを読む際、矛盾点や分かりにくい点が見つかった場合は、作成者に確認することを心がけ、情報のずれが生じないよう対策を講じることが大切です。

戦略思考入門

戦略的リーダーを目指す私の挑戦

理想のリーダー像は? 自身の理想像を戦略的に考えることは重要です。私の理想像は、40歳、または中間管理職として、どんな状況でもチームを率い、障害を乗り越えられるリーダーになることです。つまり、一貫性があり、成果を上げる能力に優れ、信頼されるリーダーを目指しています。そのためには、一貫性のあるビジョンや目標を掲げる戦略的思考が必要です。具体的には、ゴール設定と的確なルートの選択が鍵となります。そして、その実現には、実務スキルと経験の蓄積が欠かせません。 戦略思考をどう実践する? 個人の生活においても、戦略的思考を実践することが思考のトレーニングになります。特に、week4で学んだ"選択"を実践してみることにしました。その際の判断基準として、客観的な視点を持つことが重要です。また、優先順位をつけることは、何を優先するかを決めるだけでなく、優先しないものを捨てることでもあります。 案件の方向性はどう? 具体的なアプローチとして、本部戦略との整合性と市場ニーズの高さを2つの軸にして、現在の案件をマッピングしました。これによって、地域事業開発の方向性を見極めることができました。本部戦略と整合性が高く、市場ニーズも高い案件は本部で進めることが多いため、短期的な投資が見込まれます。しかし、整合性は低いものの市場ニーズが高いエリアは、投資を実現するためのストーリーが必要です。このストーリーを構築する際には、戦略思考の活用が求められます。 事業分析の鍵は何? 検討ポイントとしては、市場での当社の優位性、短期間での実現および利益貢献の可能性、対応できるリソースの有無、事業の経済性などを挙げます。特に市場での優位性と事業の経済性を戦略思考のフレームワークを使って分析したいと考えています。そして、これらを戦略方針に落とし込み、関係者のフィードバックを受けて投資実行の必要性を判断していく計画です。 実行のステップはどう? 実行段階として、まず市場ニーズの高いものから選び出し、本部戦略との整合性が高いものはある程度本社とリソースを分担します。そして、市場ニーズが高いが本部戦略と整合していないものについては、さらに検討し、スコアをつけて優先順位を決めます。最後に、本部からフィードバックを受け、ポジティブなものだけを選び、現地での開発作業を進めていきます。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

デザイン思考入門

発想転換で掴む次世代解決策

どうして視点変更? ライブ講座のプロトタイプ発表では、視点を変えることの大切さと、課題解決において意外な効果があることを学びました。特に登山用バックパックをテーマとして、課題の捉え方を変えると解決策のアプローチも異なり、全く新しい応用例につながることが印象的でした。また、参加者全員が否定せずに各自のアイディアを前向きに受け止め、議論が活発に進んだ点が良かったと感じます。初期段階では改善の余地があるアイディアも多いですが、そうした点に踏み込んで議論する雰囲気作りが重要だと実感しました。 効果はどこから来る? 今回の体験は、単に商品開発に留まらず、他の業務にも応用可能な思考の枠を広げるワークショップとして十分な効果があると感じました。自分の思考の癖に気づく機会にもなり、技術的な面は後回しにしてまずは豊かな発想を引き出すステップが新たなアイディア創出に必要であると学びました。 なぜ議論は難しい? また、アイディアを出す際にはスキャンパー法を試してみたいと思います。今回のシェアや議論はスムーズに進みましたが、実際の職場では以下のような理由からディスカッションが難しい場合もあると感じました。 ・ポジティブな議論に慣れていないため、否定的な雰囲気になりがち ・結論を急ぐ傾向があり、十分な議論が行われない ・現状維持を好むため、新たなアイディアが無視される ・いかにアイディアを出しても、従来通りの結論に戻ってしまうと感じる ・突飛なアイディアを受け入れる土壌が整っていない ・質問を避ける傾向にある こうした状況に対しては、1~3枚程度のスライドにアイディアをビジュアル化し持ち寄ることで、言葉だけでは伝わりにくい発想を明確にし、議論を促進できると感じました。実際、業務においてプロトタイピングの機会は少ないものの、AIやクラウドサービスを利用すれば自分の考えを手軽にビジュアライズできるため、非常に役立つと実感しました。 どう未来を描く? 今後は、対象顧客の課題をしっかり理解し、その中から解決すべき点を明確にした上で、アイディアの出し方やビジュアル化、フィードバックの仕組みを業務に取り入れるステップを意識していきたいと思います。一旦アイディアを数多く出し、形にして共有することで、より実践的な問題解決につなげていく方針です。

戦略思考入門

戦略思考で拓く学びの未来

目標はどう決める? 戦略志向とは、適切なゴールを定め、現状からそのゴールまでの最速かつ最短の道筋を描くことだと改めて実感しました。また、バリューチェーンの視点をより深く理解することで、生産性向上のヒントが得られることを痛感しました。今まで「分かったつもり」で進めていた部分を改め、指数関数的な変化に対して敏感に反応する必要性を感じました。 返報性を活かすには? さらに、返報性の原則を戦略的に活用する重要性にも気づきました。本質を見抜き、仕組みを捉えるためには、とにかく実践して自社の3C分析を試みることが大切だと感じています。同時に、最新のテクノロジーや新たな知識を継続的に学び続ける必要性も強く感じました。 規模調整はどうする? 規模の経済性については、コンサルタントの数が増えることで、一人当たりの固定費を下げる可能性があると理解しました。しかし、社員を増やしすぎるとコミュニケーションや各種管理コストが増大するため、フロントの生産性を最大化できる最適な規模を見極めることが非常に重要であると考えました。また、習熟効果においては、入社後の成長過程や、先輩の知見を若手に効率よく移転する仕組みを再評価すべきだと感じました。 AIで採用は変わる? ネットワークの経済性の観点から、金融業界以外でも適切なコンセプトを設定することで採用決定にかかるコストを削減できる点は大いに示唆に富んでいました。目の前のお客様への対応に加え、外部環境そのものの変化、特に生成AIの進展によるリクルーティングビジネスへの影響を、より深く分析する必要性があると痛感しました。指数関数的に進化する技術に遅れをとらないため、自社でもその活用方法を積極的に模索していく所存です。 採用戦略はどう進化? 最後に、データに基づいた人材発掘や自動化された評価・選考、企業ニーズの高度な分析、最適なマッチング、リモート面接・契約支援、さらには入社後のパフォーマンス追跡といった、一連のリクルーティングビジネスのバリューチェーンについて学ぶ機会は非常に有意義でした。また、自社のビジネスプロセスの本質を見極め、2フロア分の家賃負担と8割の在宅勤務という現状を踏まえ、社員の最適な増員シミュレーションを行うことで、固定費の軽減と利益率の向上を図る重要性を再認識しました。

クリティカルシンキング入門

思考の偏りを超え新しい自分に出会う

当たり前は実践でき? ビジネスの場で重要なのは、「言われてみれば当たり前のこと」をどれだけ意識的に実践できているか、という点です。人間は「考えやすいこと」や「考えたいこと」に無意識に集中してしまう傾向があり、これが思考に制約を与えることがあります。自分の思考には偏りがある可能性が高いことを理解し、それを大前提とすることが重要です。 自己批判の意味は? 「クリティカル」の意味は「批判」であり、その批判の対象は自分自身であるべきです。自分自身に意識を向けることによって、自らの考えをチェックし、もう一人の自分を育て、自分の考えを客観的に見直す習慣を身につけることが大切です。このスキルは独学では身につかず、他者との意見交換を通じて偏りを認識し続けることが有効です。 発想法のコツは? さらに、自分の経験や思い付きだけで発想しないために、効果的な「頭の使い方」を心得ておくことが大切です。「分ける」といった思考方法を活用します。例えば、考え始める際に対になる概念を意識し、そこから発想を広げる方法や、小さな案の共通点を見つけ出し、それを基に新しい発想を考える「具体と抽象のキャッチボール」が有効です。 実行方法はどう? 具体的な方法として、次のような取り組みが挙げられます。部下と課題解決策を一緒に見直し、頭の使い方を意識して多角的に検討した上で実行を指示する。そして、企画や発案の際にはメンバー全員に思考の偏りを自覚させ、共に意識を向けさせることが重要です。また、思い付きや直感に基づく行動を避け、じっくり考えて判断します。そして、お客様にとって何が最良かを考える際、自分一人ではなく他者と意見を出し合って決定することが求められます。 在り方変革は? まず自分自身の在り方を変える必要があります。過去には、自由に発言しているつもりでも常識の範囲内で発言していたり、周囲との調和や感覚を意識しすぎて意見が制約されていました。しかし自分の概念には偏りがあることを自覚できたので、制約された発言では意味がないと気づきました。今後は自ら意識して制約を外します。 意見の受け止め方は? これにより、自分や多くの人と異なる意見に対する受け止め方も変わるでしょう。会社でのミーティングでも少数派の意見に耳を傾け、見逃していたヒントを大切にしたいと思います。

データ・アナリティクス入門

データ分析で解決策を見つける旅

問題解決とデータ分析の関連性とは? 今週の学習を通じて、問題解決のプロセスとデータ分析の関連性について学ぶことができました。特に印象に残ったポイントは、問題解決のステップを「What(現状把握)」、「Where(問題特定)」、「Why(原因究明)」、「How(対策検討)」という形で整理するアプローチです。このステップを行き来しながら問題を深掘りしていく方法は、データ分析で何から取り組んで良いかわからない時に役立つ道筋を示してくれるため、非常に効果的だと感じました。 STARフレームワークの有効性は? 現状把握においては、問題を「あるべき姿」と「現状」のギャップと捉えることが重要です。このギャップを、STAR(Situation:状況、Target:あるべき姿、Action:行動、Result:結果)フレームワークを活用することで、より具体的に問題解決のプロセスをイメージしやすくなります。また、問題を因数分解することで、要素を細分化し問題のある箇所を特定でき、優先的に対応すべきところが明確になります。逆に、不要な範囲を明確にすることで、効率的に問題解決に繋がることも新たな発見でした。 ロジックツリーとMECEの効果は? 問題の因数分解にはロジックツリーが効果的で、層別分解や変数分解(掛け算)の2種類を問題に応じて使い分けることで、より効果的に分析が行えます。MECEの概念も重要で、「抜け漏れ、ダブりなく」問題を捉えることが重要です。 データ分析の具体的な活用例は? 今後、学んだ内容は患者の受診動向調査に活用できると考えています。どのような患者が、どの診療科をどのくらいの頻度で受診しているのかを分析することで、患者のニーズや医療機関の利用状況を把握できます。ただし、実際に活用するためには、現在のデータが分析に必要な要素を網羅しているかを確認する必要があります。 分析の目的は何か? データ分析の目的は、大きく分けて二つです。まず一つ目は患者サービスの向上で、ニーズに合った医療サービスを提供するために分析結果を役立てます。二つ目は病院経営の改善や効率化で、患者の利用状況を分析することで、リソースの最適化が図れます。さらに、定量分析だけでなく定性分析を利用することで、サービス提供時の運用上の問題を解決する可能性もあります。

クリティカルシンキング入門

数字を視覚化して成果を上げる方法

数字を分解し要素を見極めるには? 数字を分解し要素に分けることで、どこに差分があるのかを明確にすることが重要です。数字そのものではなく、割合や順番でとらえることで、差異が見えやすくなります。そのためには、割合や順番をグラフなどで視覚化すると効果的です。 多様な観点からの切り分け方は? 分解の切り口には様々な方法があります。多様な観点から切り分けることで、特徴や差分を特定していきます。特徴がある要素を見つけた場合、他に差異がないかを引き続き分解して検証します。本当にそう言い切れるかという視点で深掘りすることが必要です。 もし分解して特徴が見つからなくても、それ自体が間違いではなく、差分がないことがわかるという成果となります。切り分け方に固執せず、実際に手を動かしてみることが大切です。MECEに基づく切り分けには、層別、変数、プロセスがあります。MECEを適用する際には、最初に「全体」とは何かを定義し、全体の範囲を決めることが肝心です。 分解が市場調査にどう役立つ? これらの方法は、市場調査や競合他社の分析に役立ちます。例えば、同じ商品やサービスでも各社がどのように成り立たせているかを要素に分解し、差異性を探ることで、仮説を立てることにもつながります。また、業務システムの改善案件でも、どのプロセスにどれくらいの時間や人手がかかっているのかを分解することで、改善策を見つける手助けとなります。 プレゼン資料をより説得力のあるものにするには? データを加工する際には、クライアントへの資料をより伝わりやすく、説得力のあるものにすることが求められます。数字そのものではなく、割合や順位といった形で意味を視覚化し、要素ごとに差異性や特徴を明らかにすることで、しっかりと説得力のあるプレゼンが可能となります。 全体の定義はなぜ重要? まずは全体の定義から始め、チームで共有することが重要です。全体の定義ができたら、次は分解の切り口について皆でアイデアを出し合います。それを元に切り口ごとで差異や特徴を分析し、必要があれば更に深掘りします。特徴や差異が出ない場合でも、その事実を記録として残すことが重要です。数字はそのまま使わず、全体の中の位置づけやインパクトのある要素を際立たせるなど、ビジュアル化して関係者の共通認識とすることです。

クリティカルシンキング入門

イシュー解決力で実務が変わる瞬間

今週の学びは何? 今週、このコースの学びを整理し直し、3つの重要な点を改めて認識しました。 問いの意義は何? 第一に、「問い」が何かを考え、それを明確にすることは非常に重要です。イシューを特定することで、なぜその問題について議論しなければならないのか、その目的がはっきりします。 イシューをどう特定? 第二に、イシューを特定するためには、既存のデータを様々な角度から分析し、ピラミッドストラクチャーで情報を整理・構造化する必要があります。これにより、本質的な問い、「イシュー」を決定し、解決することが可能となります。 表現方法はどう? 第三に、相手の立場に立って表現し、主語や述語を明確にすることが大切です。スライド作成時は、グラフの活用やメッセージの強調などを通して、何を伝えたいのかを分かりやすく示すことが求められます。 業務にどう活かす? この学びは、日常の業務、たとえば「関連部署への調達コスト説明報告」や「新規プロジェクト立ち上げ・運営」「部署内の売上報告」など、さまざまな場面で活用できます。なぜなら、これらはすべて課題解決や他者との協働を伴い、問いを特定し、構造化して解決することが本質だからです。また、他者に対する表現は、強調するポイントやメッセージを明確にすることが重要です。 調達報告は何故? 具体的な活用例として「関連部署への調達コスト説明報告」を挙げると、以下のようになります。 【考え方】 これまで、報告内容は漠然と定められていましたが、まず「なぜ報告するのか、相手は何を知りたいのか」を明確にすることから始めます。これにより、報告内容や方法、頻度、対象者を最適化できます。特に調達コストについては、各品目の状況に応じた本質的なポイント「イシュー」を特定し、説明に活かしたいと考えています。大きな金額や重要品目については、ピラミッドストラクチャーを作成・提示し、その考え方を共有することで、相手の納得度も高まると感じています。 伝え方はどうする? 【表現】 先方が知りたいことや、その後の情報の取り扱い方を明確にした上で、グラフの見せ方や強調ポイントを調整します。また、どの視点(相手目線、自部署目線、自分目線)で話をするのかに注意を払い、主語と述語を明確にしながら報告を進めます。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

「必要 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right