戦略思考入門

勇気で捨てる、未来を拓く

捨てる判断はどう? 勇気を持って不要なものを捨てる重要性と、その判断基準について多くの示唆を得ました。従来、「餅は餅屋に任せる」という考え方が自組織に浸透している状況ではあるものの、捨てるという選択が顧客の利便性向上につながる点は見過ごせません。行政組織のように多くの関係者や多様な市民を抱える場合、顧客の範囲を明確に絞り、複数の角度から検討する必要性を改めて実感しました。 業務設計を再考? 一方で、新規業務の設計においても「餅は餅屋に任せる」という考え方について再考することが求められると感じました。委託先は自組織の専門職としての役割を果たす一方、公共事業としての業務遂行を確認・監査する技術の維持や、専門職の育成も重要です。捨てる行為が短期的な利益につながったとしても、中長期的にはリスクに変わる可能性があるため、外注する範囲やその品質維持レベルについて慎重に設定する必要があると考えます。

データ・アナリティクス入門

データ分析とプレゼンの質を上げるコツを学ぶ

分析における比較の重要性を学ぶ 分析とは比較であることを学びました。データを扱う際にはサンプリングバイアスに注意し、何と何を比較するか、そして目的に沿った分析を行うための問いが重要であると理解しました。すぐに飛びつかず、まず一呼吸おいてからデータを取り扱うことが大切です。 土地選定にはどんなデータが必要? 土地の選定に際しては、エリアや距離といった比較可能なデータを蓄積し、入居率や地代との関係を探ることが必要だと感じました。また、社内説明資料を作成する際には、データの表現方法としてグラフや図をどう表現するかを学んでいきたいです。 事業組成には説得力向上が必須 事業組成の中では、なぜその事業を行うべきか、比較軸を立てた上で理解しやすいデータやグラフを使用し、プレゼン資料の説明力を高めることが必要です。これにより、事業化の打率を向上させることで部署や関係各所に貢献できるでしょう。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

マーケティング入門

顧客視点で革新する商品戦略

顧客視点の違いは何? 「誰に売るか」と「顧客起点」、さらには「顧客起点」と「顧客視点」はそれぞれ異なる概念だと感じました。近年のビジネス書では、「顧客起点が正義」や「プロダクトアウトは悪」という見方が主流になっていますが、実際には、従来のプロダクトアウトの考え方に顧客視点を加えることで、新たな顧客層を開拓した事例も見受けられます。 企画段階はどう見る? しかし、企画段階において自社商品のパーセプションを明確に特定することは容易ではありません。商品がまだ完成していない状態で、単に「安くて高機能な商品」という説明をしても、ユーザーはそれだけでは具体的なイメージを持ちにくいと考えられます。 ユーザーは納得? 全く新しい商品のポジショニングを構築する際には、「本当にユーザーにその価値が伝わるのか」「実現可能な性能や機能が備わっているのか」を冷静に検討する必要があると思いました。

戦略思考入門

差別化で自社の未来を切り拓く!

競争優位性の重要性とは? 自社の経営戦略を考える上で、競争優位性を維持するためには差別化が重要であると学びました。特に自社の強みを網羅的に分析するには、VRIO分析が効果的であることを理解しました。 VRIO分析の役割は? また、VRIO分析は来年度以降の事業戦略や営業戦略を検討するうえで非常に有益なツールであると認識しました。顧客との会話で、なぜその商材が必要なのかを深掘りしてヒアリングする際にも、差別化という視点を持つことで、新たな視点から情報を整理できると思いました。 差別化要素の再整理計画 今後は、まず2月中にVRIO分析を実施し、差別化要素を再整理したいと思います。その後、足りないケーパビリティを補うための活動を実践します。さらに、差別化要素の持続的可能性を向上させるために、日本人だけでなくローカルスタッフを巻き込み、要素維持が可能な環境を整備したいと考えています。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

データ・アナリティクス入門

比較で解く原因の奥義

原因をどのように特定? 問題の原因を特定するためには、まずプロセスに分解し、そのプロセスごとに原因であるという仮説を立て検証する必要があると学びました。特に、条件を同じにして比較対象の要素をひとつだけ変更するA/Bテストの手法は、原因検証に非常に有効であると理解しました。この「分析とは比較である」という本学習の原則は、派生していっても常にその根本に忠実でなければならないと感じました。 多角的な検証の鍵は? また、問題の原因を直感で捉えるのではなく、What、Where、Why、Howの4つのステップで明確に切り分けることで、決め打ちにせず多角的な検討が可能になると実感しました。これにより、他者への仮説説明もしやすくなると同時に、A/Bテストを実施する際にもどの要素を置き換えるかを明確にしてトライアンドエラーのプロセスを進めることができ、より納得のいく検証が行えると感じました。

データ・アナリティクス入門

賃貸営業に役立つロジカル思考の実践

ステップ思考で目標達成? これまで漠然と進めていたことについて、「What」「Where」「Why」「How」というステップで考えることで、目標に早く到達できると感じました。また、ロジックツリーを用いて、もれなく重複なく(MECE)の分析方法を学びました。しかし、頭で理解するだけでなく、やはり実践を通じた訓練が必要だとも感じました。 業務データ活用の重要性 私は賃貸住宅の入居者募集業務を担当しています。物件データや毎月の入居者・退去者のデータをもとに、どのような傾向があるのかを見極め、売上や利益を伸ばすための営業戦略に応用できそうです。 視覚化で理論を実践? さらに、ロジックツリーやMECEについても、理論の理解だけでなく、実際に手を動かして試してみることが重要だと感じました。日常業務の様々な場面で、可能な限り図や文字を用いて視覚化し、訓練して習得していきたいと思います。

データ・アナリティクス入門

仮説と共に挑む成長の旅

仮説整理のコツは? 問題解決に取り組む上で、仮説を持つことの重要性を学びました。多くの仮説を出すことが望ましい一方で、考えが散らばってしまう可能性があるため、フレームワークを活用して体系的に整理することが有効です。また、仮説を立てる際には、その目的がコミュニケーションか問題解決か、あるいは過去・現在・将来のどの視点に基づいているのかを明確にしておくことが大切だと感じました。 原因特定の秘訣は? 問題発生時の原因特定をファシリテートする際には、議論が発散しないよう、仮説が結論に至るものなのか問題解決を促すものなのかを分類し、メンバーと共有することが必要だと実感しました。さらに、社内で問題解決のプロセスを議論する際の枠組みとして仮説を共通言語とすることで、検証マインドの向上、説得力の強化、問題意識の向上、スピードアップ、行動の精度向上につながることを丁寧に伝えていく意義を感じました。

クリティカルシンキング入門

問う力が拓く新たな発見

講義の影響は何? 今回の講義を通して、クリティカルシンキングの学びが自身の思考に大きな影響を与えていると感じました。問いを明確化することにより、議論が一方向に迷走せず、参加者全員で共有できる基盤が整う点が非常に印象的でした。 ディスカッションでの気づきは? また、ディスカッションでは、自分の考えを客観視する機会が増え、何が本当に必要で大切なものかを見極める手助けになりました。議論の出発点では論点をはっきりと定め、その後、様々な視点から意見を出すことで、多角的な議論が可能となったのです。 視点はどう役立つ? さらに、事象を3つの異なる視点で検討するワークを通じて、自分の思考の偏りがないかを常に確認できる環境が整っていました。文章で意見を伝える際には、主語と述語の関係を意識し、図解などの視覚化要素を活用することで、内容がより具体的で理解しやすくなったと実感しています。

「必要 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right